Facoltà di Ingegneria- Università di Reggio Calabria

COMPITO DI ALGEBRA - GEOMETRIA I (5 cfu) -Geometria e Algebra (traccia A)

(3 gennaio 2002)

	NomeCognomeMatr				
DU /DL	Denominazione materia				
	Riportare le risposte dei test (A, B, C, D nella tabella in fondo alla pagina)				

TEST

- 1. Sia $H \subset \mathbb{R}^{2,2}$ il sottoinsieme delle matrici a determinante nullo. H è un sottospazio perché contiene il vettore nullo
- H non è un sottospazio perché si può scrivere $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix}$
- H non è un sottospazio proprio di $\mathbb{R}^{2,2}$ perché si ha dim $\mathbb{H}=4=\dim \mathbb{R}^{2,2}$. H non è un sottospazio perché non contiene la matrice identica.
- 1 Punto
 - 2. Sia $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'endomorfismo con i seguenti autovettori e corrispondenti autovalori $v_1 = (1,1,1), \quad \lambda_1 = 1; \quad v_2 = (2,2,2), \quad \lambda_2 = 1; \quad v_3 = (3,3,3), \quad \lambda_3 = 2.$
- f non esiste perché si avrebbe (3,3,3) = (6,6,6)
- esistono infiniti di tali f perché $\{v_1, v_2, v_3\}$ non è una base
- f non è semplice perché non ha tre autovalori distinti
- D fè semplice

1 Punto

- 3. Si consideri la matrice $A = \begin{pmatrix} 3 & -1 & 2 \\ 0 & -5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- A A non è invertibile perché $\det A \neq 0$

$$B A^{-1} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 5 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

- A è la matrice di un isomorfismo
- $A \cdot A^{-1} \neq A^{-1} \cdot A$ D

1 Punto

- 4. Un sistema lineare di tre equazioni in quattro incognite ha
- sempre una sola soluzione A
- sempre ∞^1 soluzioni sempre una soluzione non nulla
- almeno una soluzione se la matrice dei coefficienti ha rango 3.

1 Punto

Test	1	2	3	4
Risposte				