Questo sito utilizza cookie tecnici e di terze parti. Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy. Proseguendo la navigazione o cliccando su "Chiudi" acconsenti all'uso dei cookie. Chiudi
vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

Fondamenti chimici per la sensoristica

Corso Ingegneria Elettronica
Curriculum Curriculum unico
Orientamento Elettronica per l'Industria
Anno Accademico 2019/2020
Crediti 6
Settore Scientifico Disciplinare CHIM/07
Anno Primo anno
Unità temporale Primo semestre
Ore aula 48
Attività formativa Attività formative affini ed integrative

Canale unico

Docente ANDREA DONATO
Obiettivi Al termine del corso lo studente matura conoscenze di base per la comprensione e l'utilizzo di sensori e/o trasduttori. In particolare lo studente impara ad affrontare l'argomento da un punto di vista sistemistico, enfatizzando gli elementi comuni delle diverse tipologie di sensori ed in merito alla loro valutazione e caratterizzazione. Gli strumenti sono focalizzati all'esigenza di un continuo sviluppo tecnologico in grado di soddisfare le crescenti esigenze della progettazione nel campo dell'elettronica, delle telecomunicazioni e dell'Ingegneria biomedica. L’attività didattica sarà mirata anche ad illustrare i principi teorici delle nanotecnologie che sono alla base delle moderne tecniche di fabbricazione dei sensori, sono previste inoltre anche attività laboratoriali che consentiranno allo studente la realizzazione di un sensore.
Conoscenza e comprensione: a seguito del superamento dell’esame, lo studente acquisisce le nozioni e i principi fondamentali che regolano il funzionamento dei sensori, per le diverse applicazioni.

Capacità di applicare conoscenze: a seguito del superamento dell’esame, lo studente è in grado di analizzare le caratteristiche dei materiali conduttori, semiconduttori, isolanti e dei sistemi elettrochimici.

Autonomia di giudizio: per il superamento dell'esame lo studente deve rispondere autonomamente a domande teoriche, a risposta libera ed è quindi portato a sviluppare autonomia di giudizio sulla completezza e la correttezza delle risposte fornite.

Abilità comunicative: è in grado di illustrare i principi teorici che sono alla base del fenomeno illustrato.

Capacità di apprendimento: a seguito del superamento dell’esame, lo studente è in grado di apprendere in autonomia le problematiche connesse con il fenomeno osservato.

La modalità di esame e di valutazione consiste:
- in una prova orale, volta ad accertare la comprensione degli aspetti teorici delle problematiche chimico fisiche che regolano il comportamento dei materiali in genere e dei sistemi elettrochimici, voto massimo 30/30.

Ai fine del superamento dell’esame con votazione minima di 18/30 è necessario che le conoscenze/competenze della materia siano almeno ad un livello di nozioni elementari di base. E’ attribuito invece un voto compreso fra 20/30 e 24/30 quando lo studente possegga competenze discrete. E’ attribuito un voto compreso fra 25/30 e 30/30 quando lo studente dimostri buone competenze. Agli studenti che abbiano acquisito competenze eccellenti può essere attribuita la lode.

Programma Aspetti generali sui sensori: definizione e componenti. Materiali e metodi per la produzione di sensori chimici. I nanomateriali per la realizzazione dei sensori. Generalità. I nanomateriali metallici. La sintesi di nanoparticelle metalliche. La funzionalizzazione delle nanoparticelle. Applicazioni di nanoparticelle metalliche nei sensori chimici.
I Nanomateriali di carbonio. Struttura dei CNT. Sintesi di CNT. Reattività chimica e funzionalizzazione
Applicazioni CNTA nei sensori chimici. Le nanofibre di carbonio (CNF). Nanofibre polimeriche e inorganiche. Nanomateriali a semiconduttore. Sintesi e funzionalizzazione.
Sensori chimici basati su dispositivi elettronici a semiconduttore. La Teoria delle bande dei semiconduttori. Transistor ad effetto di campo in metallo-isolante-semiconduttore (MISFET). Sensori di ioni FED e loro applicazioni. Dispositivi elettrolita-isolante-semiconduttore (EIS). Sensori di pH FED. Sonde per gas basate su ISFET pH. ISFET coperti da membrana. Elettrodi di riferimento per sensori ISFET. Sensori di gas FED. Sensori di idrogeno FED. Sensori FED Metal Gate per altri gas. Semiconduttori organici come materiali sensibili al gas. Sensori di gas FED per semiconduttori organici. Meccanismo di risposta dei sensori di gas FED. Sensori di gas basati su diodi Schottky. Transistor ad effetto di campo basati su nanotubi di carbonio.
I sensori di gas resistivi (chemiresistori): Sensori di gas a ossido di metallo a semiconduttore. Il meccanismo di risposta al gas. La risposta all'umidità. La configurazione del sensore. La Sintesi e la deposizione di ossidi metallici. La fabbricazione di chemiresistori a ossido di metallo. La selettività e la sensibilità. I chemiresistori a base di materiali organici. Applicazioni di nanomateriali nei sensori di gas resistivi. Array di sensori di gas resistivi.
Metodi di trasduzione elettrochimica dinamica: Introduzione. Celle elettrochimiche nell'analisi amperometrica. La corrente elettrolitica e il suo significato analitico. Relazioni corrente-concentrazione La curva corrente-potenziale: selezione del potenziale di lavoro. Reazioni elettrochimiche irreversibili. Geometria del processo di diffusione. Elettrodi coperti da membrana. Processi non faradaici. Origine delle correnti non faradaiche. Il doppio strato elettrico all'interfaccia elettrodo / soluzione. La corrente di carica. Applicazioni della misurazione della capacità nei sensori chimici.
Applicazioni dei sensori chimici:
a) Applicazioni ambientali per il monitoraggio dell’inquinamento;
b) Applicazioni sanitarie e nel campo biomedico (sensori chimici per la salute);
c) Applicazioni nell'industria automobilistica (controllo della miscela aria-carburante, gas di scarico, qualità dell’aria nell’abitacolo, ecc…), alimentare, nell'agricoltura e nelle biotecnologie;
Parte pratica:
Realizzazione pratica di un sensore resistivo, attraverso preparazione e deposizione di ossidi metallici semiconduttori, e successiva caratterizzazione elettrica con l’utilizzo di scheda circuitale di Arduino.
Testi docente Chemical Sensors and Biosensors: Fundamentals and Applications Florinel-Gabriel Bănică John Wiley & Sons (published edition 2012)
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online pubblicato. Per visualizzarlo, autenticarsi in area riservata.

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1693217/3252

Fax +39 0965.1693247

Indirizzo e-mail


Protocollo

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Didattica e orientamento

Tel +39 0965.16933385

Fax +39 0965.1693247

Indirizzo e-mail


Segreteria studenti

Tel +39 0965.1691475

Fax +39 0965.1691474

Indirizzo e-mail

Amministrazione

Tel +39 0965.1693214

Fax +39 0965.1693247

Indirizzo e-mail


Ricerca

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Social

Facebook

Twitter

YouTube

Instagram