Zeros or fixed points of holomorphic functions and Cauchy's integral theorem

Jean Mawhin, Université Catholique de Louvain

A version of Bolzano's intermediate value theorem for a function f holomorphic on a bounded open neighborhood $\Omega \subset \mathbb{C}$ of the origin and continuous on $\overline{\Omega}$ was proposed in 1982 by Mau-Hsiang Shih. He showed, using Rouché's theorem, that if $\Re[\overline{z}f(z)]>0$ on $\partial\Omega$, then f has a unique zero in Ω . Shih's condition corresponds to the one used in 1910 by Jacques Hadamard to deduce Brouwer's fixed point theorem from his version of Kronecker's index.

Another generalization of Bolzano's theorem for a function f holomorphic on the interior int P a rectangle $P \subset \mathbb{C}$ and continuous on P consists in the existence of a zero of f in P when $\Re f$ keeps opposite signs on the two vertical sides of P and $\Im f$ keeps opposite signs on the two horizontal sides of P. Those conditions correspond to the Poincaré-Miranda's conditions in dimension 2.

We show that a simple and unified methodology based only upon Cauchy's integral theorem gives a simple and unified proof of those two results, as well as the existence of a zero for holomorphic functions which behave like z^m at infinity.

Applications are given to Brouwer's fixed point theorem on a rectangle or a ball for holomorphic functions.