Corso di Laurea Magistrale in Ingegneria Elettronica Prova Scritta di: Fisica dello Stato Solido (Prof.Messina)

Data	Cognoma	Nome	n. matricola
Data	Cognonic	INOTHE	II. IIIau icoia

Problema 1

Si consideri un contatto tra oro (Au) e arseniuro di gallio (GaAs) di tipo-n drogato con $N_d = 5 \cdot 10^{16} \text{ cm}^{-3}$. Determinare: (a) l'altezza di barriera teorica $q\varphi_{B0}$; (b) la distanza $E_C E_F$ fra il bordo inferiore della banda di conduzione ed il livello di Fermi; (c) l'energia potenziale di built-in qV_{bi} ; (d) la larghezza x_d della zona di svuotamento per $V_R=5V$; (e) il campo elettrico E_{max} alla giunzione metallo-semiconduttore per $V_R=5V$; (f) l'abbassamento $\Delta \varphi$ della barriera Schottky; (g) la posizione x_m del massimo della barriera.

$$(N_C = 4.7 \ 10^{17} \ cm^{-3}; \ q\varphi_{Au} = 5.1 \ eV; \ q\chi_{GaAs} = 4.07 \ eV; \ \epsilon_{rel,GaAs} = 13.1; \ \epsilon_0 = 8.85 \cdot 10^{-14} \ F/cm; \ k = 1.38 \ 10^{-23} \ J/K)$$

Quesito 1

La distribuzione $\rho(E)$ di elettroni in banda di conduzione (numero di elettroni per unità di volume e per unità di energia) con energia E sopra il fondo E_c della banda di conduzione è dato da $\rho(E) = N(E) \cdot f(E)$ dove $N(E) = \gamma (E - E_c)^{1/2}$ è la densità degli stati permessi, mentre f(E) è la distribuzione di Fermi-Dirac approssimabile per E_c - E_F >> kT con la distribuzione di Boltzmann

$$F_c - E_F >> kT \text{ con la distribuzione di Boltzmann}$$
 $f(E) = \frac{1}{\exp\left(\frac{E - E_F}{kT}\right) + 1} \cong \exp\left(-\frac{E - E_F}{kT}\right)$.

Dimostrare che la distribuzione di elettroni $\rho(E)$ assume il valore massimo per $E-E_c = \frac{1}{2}kT$

Quesito 2

Si consideri una cavità ottica di lunghezza L. Se il numero di modi risonanti della cavità è N>>1, si dimostri che la separazione in lunghezza d'onda $\Delta\lambda$ fra due modi risonanti adiacenti è $\Delta\lambda = \lambda^2/2L$. Nel caso di un diodo laser in GaAs $(E_{gap}=1.42 \text{ eV})$ con lunghezza della cavità L=60 µm, calcolare la separazione tra due modi adiacenti.

Ouesito 3

Una fascio di fotoni di energia hy=1.65 eV e intensità I= 0.05 W/cm2 incide su una sottile lastra di semiconduttore. Il coefficiente di assorbimento del semiconduttore a questa energia è α =7·10³ cm⁻¹. Calcolare:

- (a) il rate g' di generazione di coppie elettrone-lacuna;
- (b) la concentrazione δn di portatori in eccesso in condizioni di stato stazionario, sapendo che il tempo di vita τ dei portatori in eccesso è $\tau = 10^{-7}$ s.

Ouesito 4

Un cristallo di silicio a T=300~K ha una concentrazione di accettori $N_a=10^{17}~cm^{-3}$. Determinare la concentrazione di donori che deve essere aggiunta al cristallo affinché esso diventi di tipo n e il livello di Fermi stia 0.10 eV sotto la banda di conduzione. ($N_C = 2.8 \ 10^{19} \ cm^{-3}$; $k = 1.38 \ 10^{-23} \ J/K$)

Quesito 5

In un semiconduttore sono presenti contemporaneamente impurità donatrici e accettatrici con concentrazioni rispettivamente N_D ed N_A .

- a) Assumendo che le impurità siano completamente ionizzate, utilizzando la condizione di neutralità elettrica e la legge di azione di massa, ricavare l'espressione esatta della concentrazione n degli elettroni in funzione delle quantità note N_D , N_A ed n_i .
- b) Ricavare l'espressione esatta della concentrazione p delle lacune in funzione delle quantità note N_D , N_A ed n_i .
- c) Utilizzando le formule esatte ricavate nei punti a) e b), calcolare la densità degli elettroni e delle lacune nel caso in cui $N_A = 0$ e $N_D = 2n_i$.
- d) Confrontare i risultati ottenuti in c) con le formule approssimate $n \cong N_D$ e $p \cong n_i^2/N_D$ valide per $N_D >> n_i$.

Ouesito 6

Calcolare la densità superficiale di atomi per un cristallo di silicio (a) sul piano (100); (b) sul piano (110) e (c) sul piano (111). La costante reticolare del silicio è $a=5.43 \ 10^{-8} \ cm$.