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Trust and Compactness in Social Network Groups
Pasquale De Meo , Emilio Ferrara , Domenico Rosaci and Giuseppe M.L. Sarné

Abstract—Understanding the dynamics behind group forma-
tion and evolution in social networks is considered an instrumen-
tal milestone to better describe how individuals gather andform
communities, how they enjoy and share the platform contents,
how they are driven by their preferences/tastes and how their
behaviors are influenced by peers. In this context, particularly
relevant is the notion of compactness of a social group. While the
literature usually refers to compactness as a measure to merely
determine how much members of a group are similar among
each other, we argue that the mutual trustworthiness between the
members should be considered as an important factor in defining
such a term. Trust has in fact profound effects on the dynamics of
group formation and their evolution: individuals are more l ikely
to join with and stay in a group if they can trust other group
members. In this paper, we propose a quantitative measure of
group compactness that takes into account both the similarity and
the trustworthiness among users, and we present an algorithm to
optimize such a measure. We provide empirical results, obtained
on the real social networks EPINIONS and CIAO, that compare
our notion of compactness versus the traditional notion of user
similarity, clearly proving the advantages of our approach.

Index Terms—Decision Support Systems, Machine Learning,
Multi-agent systems, Social network services, Social Trust.

I. I NTRODUCTION

ONLINE Social Networks (OSNs) allow people to easily
connect with each other as well as to share, discuss and

comment opinions and multimedia content.
In such a context, a relevant role is played by social

groups, that are sub-networks of users [1], [2]. Some recent
studies investigated on existing relationships between users
and groups in OSNs [3]–[5]. One of the problems recently
put into evidence in this context is the overwhelming number
of groups in real-world platforms. This causes difficultiesfor
users to select the right group(s) to join with and often lowers
their degree of satisfaction [6]–[8].

The existing research in OSNs covers the issue of computing
individual recommendations, and the aforementioned exam-
ples give attention to the issue of computing group satisfaction.
However, to the best of our knowledge, no study has been
proposed to consider the issue of managing the evolution of
an OSN group as a problem of improving thecompactnessof
the group, i.e. the stability in time of the group configuration.

But why do we need to define the group compactness
and how it could be used? The users of an OSN would
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desire to be included in groups in which they can perform
satisfactory activities, such as commenting posts and sharing
media with the other members. The satisfaction derives from
the existence of affinities among the group members, that lead
the members themselves to remain into the group and to not
leave it, thus making the groupcompact. Interestingly, the
notion of compactnessin this context of OSN groups has
been differently addressed in recent literature [9]–[11].The
most common approach is to consider group compactness
coinciding with similarity among its users. Unfortunately, the
concept ofsimilarity itself is quite subjective and different
notions have been used in different works, resulting in a lack
of consensus in the research community [12]–[14].

Another common viewpoint is to consider communities as
groups of users more densely connected among each other than
with the rest of the network: this leads to conceive the group
formation as a network clustering problem [15], [16]. A third
recent approach aims at merging the two previous strategies,
by suggesting that the formation of a group should be based
on some group compactness model that considers both struc-
tural and semantic similarities (representing commonalities of
relations, interests and preferences) [17], [18].

However, we argue that one important aspect has been
overlooked so far: the mutualtrustworthinessamong the group
members. The main reason underlying our proposal is the
evidence that individuals are motivated to stay in groups with
other members whom they trust. This evidence has been high-
lighted by several studies on real OSNs [19], [20]. Moreover,
the need to integrate a measure of trust with a measure of
similarity between group members has already been widely
discussed in the research community of multi-agent systems,
pointing out that the introduction of trust measures leads to
significantly improve the effectiveness of the agents [21]–[23].

Our definition of compactness takes into account such a
need. We introduce a measure that integrates both similarity
and trust, by using a weight coefficient that each user can
arbitrarily set. Based on this definition, we propose an al-
gorithm for automatically improving the compactness of the
groups in an OSN scenario. Our algorithm, calledU2G (users-
to-groups), solves the problem of optimal matching between
the individual users’ profiles and the profiles of the groups.
Our algorithm can be used by a recommender agent, that will
act as a counsellor for an associated human user, helping
him to join with the most suitable groups. In words, the
recommender agent can use our algorithm to make a prediction
of the satisfaction the user will obtain by joining with a given
group, based on the computation of the new compactness that
the group would assume if the user will join with it. On
the other hand, the algorithm can be implemented also by a
recommender agent associated with a given group, which will
act as a counsellor for the group administrator. In this case, the
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recommender agent is able to suggest to the administrator if
the acceptance of a given requester user would be profitable or
not. Therefore, the set of recommender agents can be viewed
as a typical multi-agent recommender system [24]–[26]. We
highlight that our definition of compactness simply merges the
two most widely recognized factors influencing the cohesion
of the groups, i.e. similarity and trust, by leaving to each user
(and to each group administrator) the possibility to personally
weight the importance of the similarity with respect to the
trust. Our algorithm is the way by which we demonstrate
the possibility to approximately optimize such a compactness
measure by using a distributed (and thus practicable) approach.
We also observe that our experiments with the version of the
algorithm that uses only the similarity are useful to quantify
the approximation introduced by this simplification.

The remainder of the paper is as follows: In Section II we
discuss related literature and the novelties provided by this
work; Section III introduces our reference scenario and Section
IV presents the proposed U2G matching algorithm. Section V
and VI describes the experiments we performed to evaluate
our method and the advantages and limitations introduced by
this approach. Finally, in Section VI we draw our conclusions.

II. RELATED WORK

The research covered in this paper lies at the intersections
of many fields likegroup modelling, matching of user and
group profilesand trust in OSNs. In this section we describe
some recent research results achieved in each of these fields
and illustrate the main novelties brought in by our approach.

An increasing number of authors focused on the problem of
suggesting items to the member of a group (group recommen-
dation). Some of such approaches follow ascore aggregation
strategy [27], [28]. More formally, letU = {u1, . . . , un} be
the user population,I = {i1, . . . , im} be a collection of items
and suppose that arating functionr : U ×I → R is available,
with R (rating space) a discrete set. TypicallyR ranges in
{0, . . . 5} ∪ {⊥}, where⊥ specifies a not yet rated item. The
functionr takes a userui ∈ U and an itemik ∈ I as input and
generates an elementrik ∈ R as output. LetG ⊆ U be a group
of users. The task of building a profile ofG is equivalent to
compute a functionfG : I → R receives an itemik as input
to return how muchik satisfies the members ofG. In this
context, perhaps, the two most popular strategies to compute
fG( ) are theAverage[27] and theLeast Misery[28].

A second category of approaches follow thepreference
aggregationparadigm [29], [30]. In [29] a technique based
on stereotypes is described, where each stereotype considers
some agents features (extracted by agents’ profile and/or their
observed behaviors) and an expected transaction outcome. In
such a way, agents and strangers can be aggregated in groups
by matching their profiles with the defined stereotypes also to
derive their associated trust. By using strategies based onso-
cial theory, the authors of [30] suggest to build ontology-based
user profiles to merge into a group profile; thanks to group
profile, content recommendations can be generated for the
group members. Our framework allows to model the policies
followed to access groups and previous user behaviours like

the posts she/he generated or if she/he liked/disliked an item.
Moreover, the management of both group and user profiles is
carried out by means of a multi-agent architecture and agents
are in charge of updating user and group profiles as well as
of finding groups a user could join. This features are only
partially considered by some of the cited papers.

In the literature there are few papers dealing with the task of
matching user and group profiles and, often, they only suggest
groups a user can join. Such a problem is also calledaffiliation
recommendation[31]. This differs from the group recommen-
dation problem, where the objects to recommend are items like
books or movies whereas in the affiliation recommendation
problem they are groups. An early contribution is due to
Spertuset al. [32] and describes an empirical comparison on
six measures to compute the user-community similarity degree
to recommend communities (that are equivalent to our groups).
Most of these measures give relevance to the users’ community
memberships as implicit indicators of the users’ behaviors;
by contrast, our approach explicitly consider both individual
and group interests, behavioral attitudes and their reciprocal
perceived trust to recommend groups.

The task of recommending communities is also considered
in [33], describing the CCF (Combinational Collaborative
Filtering) algorithm to suggest new friendship relationships
to users as well as the communities they could join. With a
probabilistic point of view, CCF considers a community from
two perspectives: abag of users(formed by its members) and a
bag of wordsdescribing community interests. By fusing these
information sources it is possible to alleviate the data sparsity
arising when only information about users (resp. words) is
used.

As a further example of different strategies, Vasukiet
al. [31] show that the co-evolution of the user’s friendship
relationships joint with the knowledge of group affiliations
form a good predictor of the next groups she/he will join with.

Our algorithm differs from all the cited studies for many
significant aspects. In particular, as first difference, interests
and habits of users and groups are more accurately described
in our agent knowledge representation (see Section III-A) than
in other proposals. It allows the matching between users and
groups profiles to be fruitfully performed by our algorithm
without the need of probabilistic or machine learning tech-
niques, as in [34]. Finally, our approach is different because
we provide an algorithm to match users and groups which is
distributed among group and user agents. It relies on a greedy
heuristic because, at each stage, it computes how good a group
is for a given user and selects, uniformly at random,NMAX
of these groups, beingNMAX a suitable threshold. In this
way, the algorithm can efficiently manage large networks
having a large number of groups. The U2G algorithm is also
flexible because it can be driven by similarity or by trust or a
their combination as the cost function.

Approaches to computing trust in OSNs model a user
community as a graphG whose vertexes represent users and
an edge joining two vertexes specifies that the user associated
with the vertexv trusts that associated with the vertexu. Since
users typically provide few trust values, the graphG is usually
sparse and suitable techniques are required to infer new trust
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and reputation values starting from available ones.
In [35] a maximum network flow algorithm onG infers

trust and in [36], a modified version of the Breadth First
Search algorithm onG infers multiple values of reputation
for each user that aggregated by applying a voting algorithm
give a unique user’s reputation value. The approach of [37]
considers paths up to a fixed lengthk in G and propagates
the explicit trust values on them to obtain the implicit ones.
Our approach significantly differ from the approaches cited
above. First of all, we model trust as a linear combination
of two factors related to thereliability and to thereputation.
As a consequence we do not assume that a user provides
trust declaration about other users. Reliability, in fact,can be
inferred by a wide range of signals regarding user behaviors.

III. T HE REFERENCESCENARIO

Our scenario deals with an OSNS described as a tuple
S = 〈U ,G〉, whereU is a set ofusersandG is a set ofgroups
of users, such that each groupg ∈ G is a subset ofU .

In such a context, we associate a multi-agent system with
S, containing a software agent for each useru ∈ U and for
each groupg ∈ G. Indeed, in our perspective, each useru
is assisted by her/his personal agent, denoted byau, during
the activities involving the participation to groups, and each
group g is assisted by an administrator agentag managing
the join requests. In Section III-A we describe the knowledge
representation associated with the agents above, while Section
III-B deals with the agents’ tasks. Sections III-C and III-D
discuss, respectively, our definitions of trust and compactness.

A. The agents’ knowledge representation

In order to characterize the interests and the preferences of
each useru (resp. groupg), we associateu (resp.g) with a
profile pu (resp.pg). Such a profile contains fivepropertiesto
incorporate in our model. The first four properties are called
interests, access preferences, behaviorsand friends and they
are calledpreference properties; they represent the preferences
expressed byu (resp. the users ofg) with respect to (i)
topics of interest, (ii ) mode to accessing groups, (iii ) ways of
performing activities and (iv) friends. A fifth property, called
trust, is a trustworthiness property, and represents how much
u (resp.g) trusts the users of the social network. We have
chosen to adopt a uniform representation for both users and
groups, and we have defined the profile ofu (resp.g) as a 5-
tuple 〈Iu, Au, Bu, Fu, Tu〉 (resp.〈Ig , Ag, Bg, Fg, Tg〉), where
Iu, Au, Bu, Fu, Tu (resp.Ig, Ag, Bg, Fg, Tg) are the properties
of u (resp.g).

The propertyIu (resp. Ig) represents the interests ofu
(resp.,g) for the different categories of interest available in the
OSN. We denote asC the set of all the possible categories,
where each elementc ∈ C is an identifier of a given category
and asIu (resp.Ig) a mapping that, for each categoryc ∈ C,
returns a real valueIu(c) (resp.Ig(c)), ranging in[0..1] and
representing the level of interest ofu (resp. the users ofg) with
respect to discussions and multimedia content dealing withc.

The propertyAu represents the preference ofu with respect
to the mode of accessing to groups (e.g.,open, closed, secret,

etc.). We denote asAu (resp.Ag) the access mode preferred
by u (resp. set by the administrator ofg). The propertyBu

represents the types of behavior adopted byu in her/his social
activities. A behavior is a type of action that a user could
perform. We suppose that a set of possible behaviors, denoted
asB, is associated with the OSN and represents the attitude
of the useru with respect to a given behaviorb belonging to
B by a boolean variable, that is set totrue if b is adopted,
false otherwise. Therefore,Bu is a mapping that, for each
behaviorb ∈ B, returns a boolean valueBu(b). The property
Fu (resp.Fg) represents the set of all the users that are friends
of u (resp. the set of all the users that are friends of at least a
member ofg); it is included to reflect the users social structure,
i.e. the social ties existing among users of the platform.

The propertyTu represents the trust perceived byu with
respect to each other user of the social network. In detail,Tu
is a mapping that, for each userv ∈ U , returns a real value
Tu(v), ranging in[0..1]; it represents the trust perceived byu
with respect tov (see Section III-C). Analogously, the property
Tg represents the trust that the groupg, considered as a whole,
perceives about each user of the OSN. Similarly to above,Tg
is a mapping that, for each useru ∈ U , returns a real value
Tg(u), ranging in [0..1], representing the trust perceived by
g with respect tou. More in particular,Tg(u) is computed
as the mean of all the individual trust measuresTv(u) for
eachv ∈ g. It is important to highlight that our definition
of trust for a group is a statistical simplification, reasonable
only if the standard deviation fromTg is sufficiently small.
This definition can have a little meaning in the cases that
assumption is not valid. However, these cases correspond to
groups having a small compactness; because of our algorithm
has the goal of increasing the compactness, this yields a
decrease in the standard deviation ofTg, thus making our
definition reasonable.

We remark that both categories, access mode and behaviours
are considered as common ontology elements for all the
users of the network (similarly to the situation happening
in Facebook, where the possible choices for categories of
interest and access modes are pre-defined), thus we suppose
a homogeneous semantic scenario. We also suppose that the
computation of the interest values can be automatically per-
formed by software agents that operate over the shoulders of
the user, analysing the categories associated with the contents
posted by the user himself.

B. The agents’ tasks

According to the profiles and properties defined above, the
agentau (resp.ag) automatically performs the following tasks:
Task 1. It updates the profilepu (resp. pg) of u (resp. g)
every timeu (resp. a user ofg) performs an action involving
any information represented inpu (resp.pg). Every timeu
publishes a post, or comments an already published post,
dealing with a categoryc, the value Iu(c) is updated as
follows:

Iu(c) = θ · Iu(c) + (1− θ) · δ

that is a weighted mean between the previous interest value
and the new value. Hereθ and δ are real values (ranging in
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[0..1]). More in detail,δ represents the increment we want to
give to theu’s interest inc consequently of theu’s action,
while θ is the relevance we want to assign to the past values
of Iu(c) with respect to the new contribution. The valuesθ
and δ can be either arbitrarily assigned by the user itself, or
optimized via a learning algorithm. This formula has been
largely used in many trust-based approaches for multi-agent
system, showing good results in practical situations in term
of effectiveness when the weightsθ and δ are correctly set
[38]–[42]. This way, it is possible for an OSN analyst to
experimentally determine how much the interest increases
when the user select the associated category, and how much
important is the influence of the past choices in the updating.
In our experiments, we refer to values ofθ and δ commonly
used in some multi-agent systems, as in [43].

Similarly, the Ig(c) value of a groupg is updated by the
agentag every time theIu(c) value of any useru ∈ g changes.
The new value ofIg(c) is computed as the mean of all the
Iu(c) values∀c ∈ g. Moreover, every timeu performs an
action in the OSN (e.g. publishing a post, writing a comment,
etc.) its agentau analyses the action and appropriately sets
the boolean values for all the variables contained inBu.
Analogously, the agentag, associated with a groupg, updates
the variables contained inBg every time the administrator
of g decides to change the correspondent rules. Furthermore,
if u (resp. the administrator ofg) decides to change her/his
preference with respect to the access mode, the agentau (resp.
ag) appropriately updatesAu (resp.Ag). Moreover, ifu (resp.
a user ofg) adds or deletes a person in her/his friend list, the
agentau (resp.ag) consequently updatesFu (resp.Fg). Note
that ag computes the propertyFg as the union of the setsFu

of all the usersu ∈ g. Finally, if u expresses an evaluation of
a post authored by another userv, the agentau re-computes
the trust measuretu,v, as described in Section III-C.

Task 2. Periodically, the agentau (resp.ag) executes the user
agent task (resp. group agent task) described in Section IV,
in order to contribute to theUser-to-Group(U2G) Matching
global activity of the social network. To perform Tasks 1 and
2, agents can interact with each other, sending and receiving
messages. This possibility is assured by the presence of a
Directory Facilitator agent (DF), associated with the whole
social network, that provides an indexing service. The names
of all the users and groups of the social network are listed in
an internal repository of the DF, associating with each userand
group the corresponding agent name. ACommunication Layer
allows an agentx to send a message to another agenty simply
by using the name ofy in the receiverfield of the message.
Note that maintaining the DF naming repository is the only
centralized activity in our social network scenario, while
the algorithm computing the U2G matching is completely
distributed on the whole agent network. The whole architecture
described above is synthetically represented in Figure 1.

C. Trust

The users of a social network mutually interact during their
social activities, and each useru can express her/his level of
satisfaction about the interactions with another userv.
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Fig. 1. The U2G multi-agent architecture.

In Trust theory, this satisfaction level is generally called
reliability of v as perceived byu. Generally, in OSNs,u
expresses her/his satisfaction aboutv by simply clicking on
buttons such as “I Like It” (for example, on Facebook) or
+1 (on Google+, YouTube, etc.), or vice-versa on the button
“I Do Not Like It” or −1 (on YouTube, Yiid, etc.), without
possibility of better refining her/his evaluation. Howeverin our
approach, for being as more general as possible, we represent
the reliability ofv as perceived byu with a real value denoted
as relu→v, ranging in the interval[0..1], where0 (resp. 1)
is the least (resp. largest) value of reliability. Note thatthe
reliability is an asymmetric measure: this implies thatrelu→v

is not necessarily equal torelv→u, and for such a reason in our
notation we introduce the symbol→ to clarify the direction
of the trust relation.

The computation ofrelu→v strictly depends on the par-
ticular system of evaluation adopted in the given OSN. For
instance, if the evaluation of posted contents can be performed
via the buttons “I Like It” and “I Do Not Like It”, relu→v

could be computed as the ratio of the positive evaluations
to the total evaluations expressed byu about the contents
posted byv [44], [45]. Besides this measure of direct trust, we
also define a global measure of the trust that the whole OSN
perceives about each useru. We call this measurereputation
of u, denoting it asrepu, and we compute it by averaging all
the reliability valuesrelu→v, for eachv ∈ U .

Each useru, based on the aforementioned measures, can
derive a synthetic measure of the trust about another user
v, by integrating both reliabilityrelu→v and reputationrepv
from her/his personal viewpoint, depending on the importance
she/he gives to the reliability with respect to the reputation. We
define thetrust of u aboutv, denoted bytu→v, the following
weighted mean:

tu→v = αu · relu→v + (1− αu) · repv

whereαu is a real coefficient, ranging in[0..1], representing
how much the reliability is considered important with respect
to the reputation by the useru: if αu is set to0 by u, this
means thatu does not assign any relevance to the reliability in
determine thev’s trustworthiness, whileαu = 1 means thatu
considers only the reliability for evaluating the trustworthiness
of v. It’s noteworthy that, following this intuition, trust is an
asymmetric measure since in its formulation it accounts for
reliability. The measurerelu→v is updated by the agentau
each time the useru expresses an evaluation of a post authored
by u. Moreover, the agentau contacts theDF agent each time
a reliability value is updated, sending the new value to it.
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The agentau obtains the measurerepu from the DF, when
necessary to compute the trust. We highlight that the reliability
relu→v is used when available, i.e. when a direct interaction
betweenu andv happens. Otherwise, only the reputation value
associated withv is used, derived from the whole community.
We also specify that some cold start values are used for the
reliability, that in our experiments are all set to0, meaning no
trust for a unknown user. Besides, we make the assumption
that in the social network there is the possibility to express
trust in a given user; for example, as in the case of the
EPINIONS and CIAO OSNs we have used in our experiment,
where a user directly expresses his trust for another user.
Obviously, in those OSNs that do not make available direct
mechanisms to express trust, our approach presents some
limitations, and can be applied only by introducing some
indirect trust measures, as considering theI like it mechanism,
that could only partially capture a real trust evidence.

Finally, we define a measuretu→g to determine the trust-
worthiness of a groupg as perceived byu. This measure is
determined by averaging all the valuestu→v for all the usersv
belonging tog. We also define the measuretg→u, representing
a synthetic evaluation of the trust that the whole groupg
perceives versus the useru. It is computed by averaging all
the trust valuestv→u, wherev is a member ofg. Formally,
tg→u =

∑
v∈g tv→u/|g|, ∀v ∈ g and |g| is the size ofg.

D. Similarity and Compactness

The compactness of a pair of users (resp. a user and a group)
depends on the degree of similarity of the two users and on
the trust associated with the two users (resp, the user and the
group). As for trust, we shall use the computational framework
described in Section III-C. The similarityσu,v between the
profile of usersu andv is defined as a weighted mean of four
contributionscI , cA, cB andcF , associated with the properties
I, A, B andF , respectively. Each contribution measures how
much the values of the corresponding property inpu and in
pv are similar. To this purpose:

• cI is computed as the complement (with respect to 1) of
the average difference between the interests values ofu
andv for all the categories present in the social network.
Formally: cI = 1−

∑
c∈C

|Iu(c)−Iv(c)|

|C|
• cA is set equal to 1 (resp. 0) ifAu is equal (resp. not

equal) toAv.
• cB is computed as the complement (with respect to 1) of

the average difference between the boolean variables con-
tained inBu andBv, respectively, where this difference
is equal to 0 (resp. 1) if the two corresponding variables
are equal (resp. different).

• cF is computed as the Jaccard similarity between the set
of friends ofu andv, i.e. cF = 1− |Fu

⋂
Fv |

|Fu

⋃
Fv |

Note that each contribution has been normalized in the interval
[0..1], to make comparable all the contributions. The similarity
σu,v is then computed as

σu,v =
wI · cI + wA · cA + wB · cB + wF · cF

wI + wA + wB + wF

The similarity σu,g between a useru and a groupg
is computed in the same manner described above, simply
substituting the userv with the groupg.

In order to compute the compactness between a useru
and a userv, denoted byγu→v, it is necessary to consider
both the similarityσu,v and the trusttu→v. Therefore, the
compactnessγu→v is usually an asymmetric measure, i.e.
γu→v is generally different fromγv→u, because, in general
tu→v 6= tv→u. Moreover, the computation of the compactness
γu→v depends on how much importance the useru gives to
the similarity withv with respect to the trust he has inv. We
model the level of importance given to the similarity by a real
coefficientWSu, ranging in [0..1]. Consequently, we define
the compactnessγu→v as the following weighted mean:

γu→v =WSu · σu,v + (1−WSu) · tu→v

and the compactnessγu→g between the useru and the group
g as the analogous weighted mean:

γu→g =WSu · σu,g + (1−WSu) · tu→g

The asymmetric nature of this measure leads us to define
also the compactnessγg→u that a groupg, considered as a
whole, perceives versus a useru. This measure is defined as:

γg→u =WSg · σg,u + (1−WSg) · tg→u

whereσg,u = σu,g (because similarity is symmetric), while
tg→u is computed as described in Section III-C. The coeffi-
cientWSg is associated with the given groupg.

IV. T HE U2G MATCHING ALGORITHM

In this section we describe theU2G matching algorithm
which has been designed to match users with groups with the
goal of optimizing compactness. The U2G matching is a global
activity distributed on the user and group agents belonging
to the agent network. Each user agentau (resp. group agent
ag) periodically executes the followinguser agent task(resp.
group agent task), where we callepocheach time the task
is executed, and we denote asT the (constant) time period
elapsing between two consecutive epochs.

In the following, we first provide a theoretical justification
of the U2G matching algorithm (Section IV-A) and, after that,
we provide a complete description of the user agent task (see
Section IV-B) and of the group agent task (Section IV-C).

A. Theoretical Justification

This section targets at illustrating the theoretical pillars on
which the U2G algorithm is based on. The U2G algorithm is
completely distributed and can be executed by user and group
agents; due to the similarities between the algorithm run by
user agents and that run by group agents we will focus only
on the task of matching users with groups. The extension to
the stage performed by group agents is straightforward and
omitted for the sake of briefness.

The task of selecting the best suitable group(s) to rec-
ommend to each user can be conveniently formulated as an
optimization problem. Let assume that each useru is willing
to join with the group(s)g from which she/he will get highest
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payoff: in our scenario, the payoff is given by the compactness
function γu→g. In our formulation it is convenient to add
two further constraints. The former requires that a user joins
with no more thanNMAX groups. Although we do not
pose any limitation on the value ofNMAX , it has been
observed thatNMAX in real online platforms is much less
than the overall number of existing groups. This results in
that each user agentau is in charge of selecting no more than
NMAX groups a user can join with. The latter constraint
is to fix a certain thresholdτ > 0 so thatγu→g ≥ τ . This
constraints encodes the intuition that a user joins with a group
only if this action yields an actual benefit (that, in our case,
consists of an increase of compactness). Otherwise stated,we
determine a priori that a user does not join with a given group
if the expected payoff she/he can get back is less than a fixed
thresholdτ . If we define the variablesδu→g = 1 if u joined
with g and 0 otherwise, we obtain the following optimization
problem:

max
∑

u∈U ,g∈G

γu→gδu→g

s.t. γu→g ≥ τ ∀u ∈ U , ∀g ∈ G
∑

u∈U ,g∈G

γu→gδu→g ≤ NMAX (1)

Since we can assume that two arbitrary usersu1 and u2
may join with the same groupg, we can suppose that for each
groupg ∈ G there are as many copies ofg as the number of
users inU . This observation leads us to define|U| optimization
problems, each of them as specified by Equation 1, and solve
each of these problems independently one another. A further
observation derives from the second constraint: since we can
suppose that all the coefficientsγu→g are known in advance,
we can filter out all the groupsg∗ ∈ G such thatγu→g∗ < τ
and this yields some computational advantages. Therefore,if
we defineG∗

u = {g ∈ G : γu→g ≥ τ}, the previous problem
can be rewritten as

max
∑

u∈U ,g∈G∗
u

γu→gδu→g

s.t.
∑

u∈U ,g∈G∗
u

γu→gδu→g ≤ NMAX (2)

In the following we shall denote asφ the objective function
to optimize, i.e.:

φ =
∑

g∈G

γu→gδu→g (3)

Under this formulation it is easy to recognize that the
optimization problem in Equation 2 is a variant of the well-
known Knapsack problem in which the weight of the items to
manage are all equal to 1 and the profits are equal toγu→g. In
such a case, there is an optimal solution that can be generated
by taking the bestNMAX groups, i.e. theNMAX groups
showing the highest values of compactness. In the following
we shall focus on two cases, namely:

1) Complete Knowledge. We suppose that each user agent
is aware of the compactness of all of the existing groups.

In this case, the U2G algorithm generates the exact
solution by means of a polynomial-time algorithm.

2) Incomplete Knowledge. In this case we suppose that each
user agent knows just a subset of the available groups
and, for each of them, also the compactness value is
known.

The Incomplete Knowledge hypothesis is more realistic than
the Complete Knowledge one because, in large OSNs, we
expect a huge number of groups, which quickly grows over
time. Therefore, the assumption that each agent can manage
the list of all available groups and it can run on them
some computation does not appear feasible. To model such
a scenario we assume that each user agent can query the DF
directory and it can extract a listL of groups and, based on
the received results, it can decide which group(s) is relevant
to a user. From an algorithmic standpoint, the formulation in
case of incomplete knowledge is more challenging than that of
complete knowledge: each agent knows just a fraction of the
available groups and, in principle, we would not expect that
it is able to generate the optimal solution. However, in the
following we will show that under the reasonable hypothesis
that groups inL are sampled uniformly at random fromG, then
the solution produced by the U2G algorithm differs from the
optimal one only by a constant factor. This desirable property
of our algorithms makes it potentially very appealing for real
applications.

B. The user agent task

In this section we describe the part of U2G algorithm about
the matching of users and groups. In detail, we provide two
versions of this algorithm: the former is called U2G-C and
it handles the Complete Knowledge configuration; the latter,
called U2G-I is designed to handle the Incomplete Knowledge
configuration. We start discussing the U2G-C algorithm and
subsequently we present the U2G-I algorithm.

In detail, letX be the set of then groups the useru is
affiliated to, wheren ≤ NMAX . As observed in Section
IV-A, the coefficientNMAX specifies the maximum number
of groups which an arbitrary user can affiliate to.

We suppose that the user agentau: (i) records into an
internal cache the profiles of the groupsg ∈ X obtained in the
past by the associated group agents; (ii ) associates each profile
pg with the date of acquisition, denoted asdateg. Let alsom
be the number of the group agents that at each epoch must be
contacted byau. The user agentau behaves as follows (see
Figure 2):Step 1. In the DF repository, it randomly selectsm
groups that are not present inX . Let Y be the set of these
selected groups, and letZ = X

⋃
Y be a set containing all the

groups present inX or in Y . Step 2. For each groupg ∈ Y ,
and for each groupg ∈ X , such that the date of acquisition
dateg is higher than a fixed thresholdψ, it sends a message
to the group agentag (action 1 of Figure 2), whose name has
obtained by the DF, requesting it the profilepg associated
with the group.Step 3. For each receivedpg (action 2 of
Figure 2), it computes the compactnessγu→g between the
profile of u and the profile ofg (action 3 of Figure 2).Step
4. Now, let τ be a real value, ranging in[0..1], representing
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Fig. 2. User agent task schema

a threshold for the compactness, such that each groupg ∈ Z
is considered as a good candidate to join with ifγu→g > τ .
All the good candidates are inserted byau in the setGOOD.
Note that if more thanNMAX groups satisfy the condition
for being inserted inGOOD, than theNMAX groups having
the highest values of compactness are selected.

For each selected groupg ∈ GOOD, when g 6∈ X , the
agent au sends a join request to the agentag, that also
contains the profilepu associated withu (action 4 of Figure
2). Otherwise, for each groupg ∈ X , wheng 6∈ GOOD, the
agentau deletesu from g. Observe that the usage of a date of
acquisition has not been considered in Section IV-A; however
this is a minor modification which has not any practical
impact on the algorithm and on its performance. The U2G-
C algorithm works in an iterative fashion and it is convergent,
as proven in the following Theorem:

Theorem 4.1: Letφ(k) be the value of the optimization
function associated by the U2G-C algorithm at thek-th
iteration and let φ̂ be the optimal solution associated with
the optimization problem reported in Equation 2. Then the
sequence{φ(k)} is convergent tôφ.

Proof To prove our result let us defineδ(k)u→g the value of the
variableδu→g generated by the U2G-C algorithm at thek-th
iteration; letφ(k) be the corresponding value of the objective
function, i.e.,φ(k) =

∑
g∈G γu→gδ

(k)
u→g. Let φ̂ be the optimal

solution. We first observe that the sequenceφ(k) is bounded.
In fact, by contradiction, suppose thatφ(k) is not bounded,
i.e., for any arbitraryL > 0, there exists an indexk such
that φ(k) > L. Since L is arbitrary, we can fixL > φ̂,
and, therefore,φ(k) > φ̂; this is a contradiction because,
by definition, φ̂ is the maximum ofφ, and, then, for any
assignment of the variablesδu→g, the corresponding value of
φ must be less than̂φ. Secondly, observe that the sequence
φ(k) is monotonically non-decreasing because, at each iteration
the U2G-C algorithm adds an element toGOOD if and only
if γu→g > τ and this yields an increase in the value ofφ.
Since the sequenceφ(k) is bounded and monotonically non-
decreasing it is also convergent and it converges to the actual
optimal solutionφ̂. �

Since the U2G-C algorithm is iterative we could stop com-
putation prior to generate the optimal solution. In SectionV-A
we briefly discuss how quickly the U2G algorithm converges.

A slight change is required to implement the U2G-I algo-

rithm, i.e. to handle theIncomplete Knowledgeconfiguration.
In this case, in fact, we assume that the algorithm knows only
the largest numberNMAX of groups a user is allowed to join
with. The user agent queries the DF and it receives as answer
a code identifying a groupg and the compactnessγu→g of u
with respect tog. On the basis of this information, the U2G-I
algorithm has to decide ifg has to be suggested tou or not.
The U2G-I algorithm is similar to the U2G-C algorithm but
it uses a different policy to build theGOOD set. Prior to
providing a technical description of the U2G-I algorithm we
aim at illustrating the main intuitions behind it.

The U2G-I algorithm strongly resembles the well-known
secretary problem[46]: in it we suppose that some persons
apply for a position (e.g., secretary) and our goal is to select
the best candidate. Candidates are interviewed in a random
order and the hiring manager does not know in advance the
curricula of all available candidates. For each candidate,a
decision has to be taken immediately after the end of the
interview. The secretary problem requires to find a policy to
maximize the probability of selecting the best candidate [46].

The best known strategy to solve the secretary problem
is quite simply but it produces surprisingly good results. In
fact, suppose thatn secretaries have to be interviewed and
let us fix an integerr, such that1 ≤ r ≤ n. The first r
candidates will form areference setdenoted asR. After this
we will explore the remainingn− r candidates and if we find
a candidate which is better than all the candidates inR then
this candidate will be hired. The choice ofr is the trickiest
part of the algorithm: in fact ifr = 1, then the algorithm
incur in poor performances because it could select the second
worst candidate. Ifr = n − 1 the algorithm generates the
optimal solution but it has to view alln candidates. Theoretical
analysis show that if we fixr =

⌈
n
e

⌉
the probability of

making the best choice is at least1
e

[46]. The U2G-I algorithm
aims at finding the bestNMAX groups assuming that the
algorithm can not know all available groups. If we suppose
NMAX = 1 the problem to solve reduces to the secretary
problem. [46] considers some extensions of the traditional
secretary problem in which more than one candidates can be
selected. However, the problem considered in this paper (and
the associated algorithm) is not covered in [46]; in addition,
as a further and novel research contribution, we provide a
bound on the correctness of the results yielded by the U2G-
I algorithm. The rationale behind the algorithm is to build a
reference setof sizer, beingr a threshold whose value will be
specified later and to select a group if its compactness against
u is better than the compactness of the worst group currently
stored in the reference set. The algorithm uses two setsG1

andG2 to generate the setGOOD (which, at the beginning,
is empty). The setsG1 andG2 are built as follows:

1) The user agent issuesr queries withNMAX ≤ r ≤ |G|
and it gets as answerr groups. The setG1 will contain
the received groups and it plays the role of the reference
set.

2) TheG2 set will contain the bestNMAX groups.
3) The U2G-I performs other|G| − r iterations and, at

each iteration, it queries the DF and gets a groupg∗

with a compactness value equal toγu→g∗ . The groupg∗
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is picked uniformly at randomamong all the available
groups.

4) Letg be theNMAX-best group inG2, i.e., the group in
G2 showing the lowest level of compactness withu. If
γu→g∗ > γu→g we say thatg∗ beatsg. In this case,g is
deleted fromG2 and it is replaced byg∗. In addition, ifg
belongs also toG1, theng∗ will be inserted inGOOD.

In other words, the setGOOD is progressively built as
follows: for each retrieved groupg∗, the U2G-I algorithm
checks if there exists at least one groupg in G2 such thatg∗

beatsg. In the affirmative case, a further check is performed:
the U2G-I algorithm verifies whetherg belongs also toG1.
This resembles the secretary problem in which a candidate is
selected if she/he beats all of the candidates in the reference
set. Of course, in our setting, we do not want thatg∗ beats
all the groups in the reference set but we are satisfied if it
beats at least one of the groups in the reference set and, to
this purpose, we compareg∗ with the worst group inG2. If
this check ends positively, theng∗ is inserted inGOOD.

We are now in the position of analyzing the quality of the
solution generated by the U2G-I algorithm. To perform our
analysis, letφ̃ be the value of the objective function returned
by U2G-I algorithm. Since groups are selected uniformly at
random, we have that̃φ is a random variable and its value
equalsφ̃ =

∑
g∈G γu→gxu→g , beingxu→g a random variable

equal to 1 if and only ifg is selected, 0 otherwise. LetOPT =
{ĝ1, . . . , ĝNMAX} be theoptimal solutionwhere ĝi is the i-
th best group, i.e. the group having thei-the best value of
compactness with respect to the useru. Finally, let φ̂ be the
value of the objective functionφ associated with the optimal
solutionOPT . As in the secretary problem, we can assess the
quality of the produced solution by comparing the expected
value ofφ̃ with φ̂. In particular, we wish to prove the following
result:

Theorem 4.2: Letφ̃ be the value of the solution found
by executing the U2G-I algorithm and let̂φ be the optimal
solution. We have that:E[φ̃] > 1

e
φ̂

Theorem 4.2 informs us that the solutions produced by the
U2G-I algorithm,on average, differ from the optimal one by
a constant factor, independently of the number|G| of available
groups. This is therefore a tight bound on the correctness ofthe
results produced by the U2G-I algorithm. To prove Theorem
4.2 we need the following preliminary result:

Lemma 4.3: Suppose to run the U2G-I algorithm in such
a way as to|G1| = r and letGOOD be the solution that
the U2G-I algorithm produces. Finally, let̂gi be thei-th best
group. The probability that̂gi belongs toGOOD is at least
r
|G| ln

(
|G|
r

)
, i.e.:Pr[ĝi ∈ GOOD] ≥ r

|G| ln
(

|G|
r

)

Proof Suppose that the U2G-I algorithm selects a group, say
g∗, which belongs to the solutionGOOD generated by the
U2G-I algorithm. We wish to compute the probability thatg∗

coincides with thei-th best group̂gi. This means that there
exists an iterationj in which g∗ has been selected, withr <
j ≤ |G| andg∗ = ĝi. Therefore, the probability thatPr[ĝi ∈

GOOD] is equal to:

Pr




|G|⋃

j=r+1

{g∗ selected in thej-th iteration andg∗ = ĝi}




(4)
Since the events above are mutually disjoint, we have that

Pr[ĝi ∈ GOOD] is equal to:

Pr[ĝi ∈ GOOD] =

=

|G|∑

j=r+1

Pr (g∗ selected in thej-th iteration andg∗ = ĝi)

(5)

By applying the definition of conditional probability we
have that

Pr (g∗ selected in thej-th iteration andg∗ = ĝi) =

Pr (ĝi selected in thej-th iteration|g∗ = ĝi)× Pr (g∗ = ĝi) =

=
r

j
×

1

|G|
(6)

The previous equality is explained as follows: since all
groups are selected uniformly at random, then the probability
of selectingg∗ is at least equal to1|G| . In addition, according to
Step 4 in the U2G-I algorithm,g∗ will be part of theGOOD
set if and only if there exists at least one groupg ∈ G1 such
that g∗ beatsg. Since |G1| = r by hypothesis, there arer
chances that the groupg exists. Therefore, the probability that
g∗ has been selected in thej-th iteration is equal tor

j
. We

get:

Pr[ĝi ∈ GOOD] =

|G|∑

j=r+1

r

j
×

1

|G|
=

r

|G|

|G|∑

j=r+1

1

j

Since
|G|∑

j=r+1

1

j
≥

∫ |G|

r

1

x
dx = ln

(
|G|

r

)

we get

Pr[ĝi ∈ GOOD] ≥
r

|G|
ln

(
|G|

r

)

which ends the proof.�

By means of Lemma 4.3, we have the following result:
Theorem 4.4: For any value ofr, the U2G-I algorithm

generates a solution such that the expected value ofφ̃ satisfies
the following inequality:

E[φ̃] >
r

|G|
ln

(
|G|

r

)
φ̂

being φ̂ the optimal solution.

Proof By definition of φ̃ and expected value we get:

E[φ̃] = E



∑

g∈G

γu→gxu→g


 =

∑

g∈G

E[γu→gxu→g] =

∑

g∈G

Pr[g ∈ GOOD]γu→g

(7)
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becauseE[xu→g ] = Pr[xu→g = 1]×1+Pr[xu→g = 0]×0 =
Pr[xu→g = 1] = Pr[g ∈ GOOD]. We can bound the left
side of Equation 7 by focusing only on theNMAX optimal
groups belonging toOPT , i.e.:

E[φ̃] =
∑

g∈G

Pr[g ∈ GOOD]γu→g ≥

NMAX∑

i=1

Pr [ĝi ∈ GOOD] γu→ĝi .

(8)

By Lemma 4.3 we getPr [ĝi ∈ GOOD] ≥ r
|G| ln

(
|G|
r

)
,

which allows us to write:

E[φ̃] ≥

NMAX∑

i=1

r

|G|
ln

(
|G|

r

)
γu→ĝi =

r

|G|
ln

(
|G|

r

)NMAX∑

i=1

γu→ĝi =
r

|G|
ln

(
|G|

r

)
φ̂

(9)

and this ends the proof.�

We are now able to prove Theorem 4.2. In particular,
observe that, according to Theorem 4.4, for any choice ofr we
getE[φ̃] ≥ r

|G| ln
(

|G|
r

)
φ̂. In the previous inequality, the worst

case occurs when the functionf(r) = r
|G| ln

(
|G|
r

)
achieves

its maximum value. Such a value can be easily computed by
means of calculus. In particular, sety = r

|G| and observe that
f(y) = y ln 1

y
= −y ln y. We have:

f ′(y) = − ln y − 1 f
′′

(y) = −
1

y

Observe thatf ′(y) = 0 if y = y∗ = 1
e

andf
′′

(y∗) < 0. In
addition, we have thatlimy→0 f(y) = 0 andlimy→+∞ f(y) =
−∞. Thereforef(y) achieves its maximum aty = y∗, i.e.,
if |G|

r
= 1

e
which impliesr = |G|

e
. The maximum off(r) is

then equal to1
e
. This also implies thatE[φ̃] > 1

e
φ̂, i.e., the

expected value of the solution found by the U2G-I algorithm
differs from the optimal one by a constant factor and this
proves Theorem 4.2.

C. The group agent task

In this section we describe the algorithm implemented by
the group agent. LetK be the set of thek users joined with the
groupg, wherek ≤ nKMAX , beingnKMAX the maximum
number of members allowed by the group administrator. We
suppose thatag stores into an internal cache the profiles of the
usersu ∈ K obtained in the past by the associated user agents,
and also associates with each profilepu the date of acquisition,
denoted asdateu. Each timeag receives a join request by a
user agentr, that also contains the profilepr associated with
r, it behaves as follows (see Figure 3):Step 1. For each user
u ∈ K such that the date of acquisitiondateu is higher than
a fixed thresholdη, it sends a message to the user agentau,
whose name has obtained by the DF, requesting it the profile
pu associated with the user (action 1 of Figure 3).Step 2. After
the reception of the responses from the contacted user agents
(action 2 of Figure 3), it computes the compactness measure

Social Network
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Ki U {r }i
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i
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Fig. 3. Group agent task schema

γg→u between the profile of each useru ∈ K
⋃
{r} and the

profile of the groupg (action 3 of Figure 3).Step 3. Now, letπ
a real value, ranging in[0..1], representing a threshold for the
compactness, such that a useru is considered as acceptable
to join with if γg→u > π. Then, the agentag stores in a set
GOOD those usersu ∈ K

⋃
{r} such thatγg→u > π (if

there exist more thannKMAX users satisfying this condition,
the nKMAX users having the highest values of compactness
are selected). Ifr ∈ GOOD, ag accepts its request to join
with the group (action 4 of Figure 3). Moreover, for any user
u ∈ K, with u 6∈ GOOD, ag deletesu from the group.

V. EVALUATION

In this section we describe some experiments we performed
to evaluate the effectiveness of the U2G matching algorithm.
To this purpose, we have implemented an OSN simulator,
called U2G-Sim, written in JAVA, capable of simulating our
algorithm on a given OSN.

As a measure of the internalcompactnessof a group, we
use the concept ofaverage compactness, an extension of
the average dissimilarity commonly exploited in Clustering
Analysis [47]; it is defined as the average of the compactness
values between each pair of objects in a cluster. In our
scenario, a groupg is the equivalent of a cluster of users, and
the average compactness ofg, denoted asACg is computed
as

∑
x,y∈g,x 6=y γx→y/|g|.

In order to measure the global compactness of the groups of
the social network, we compute the meanMAC and standard
deviationDAC of all theACg. We evaluate the performances
of our algorithm on real data extracted from the well-known
OSNs EPINIONS and CIAO. The two datasets have been
crawled in the context of the research described in [48], and
are publicly available at http://www.public.asu.edu/∼jtang20/
datasetcode/truststudy.htm. EPINIONS and CIAO are product
review sites providing a trust network among users. Such sites
provide a sensible platform to study trust in an online world.

In both these datasets we have, for each user, her/his profile,
her/his ratings and her/his trust relations. For each rating,
we have the product name and its category, the rating score
and the helpfulness of this rating. The EPINIONS dataset
consists of22, 166 users, while CIAO contains only12, 375
users, but it has more close-knit trust relationships. In a first
experiment, we apply our matching algorithm to the CIAO
dataset, assuming a number of 75 groups; users were randomly
distributed in these groups. As we can see in Table I, we
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TABLE I
VALUES OF THE PARAMETERS USED IN THEU2G-SIM SIMULATOR FOR

CIAO AND EPINIONSDATASET.

θ τ π

Value 0.8 0.29 0.29

KMAX NMAX NREQ

Value 250 20 5

have setτ and π to a value of 0.29 because this value
produces the best results in the simulation. Moreover, we set
KMAX = 250, WSu = 0.5 andWSg = 0.5 for each useru
and groupg; in this way we assume that all the users and all
the groups give the same importance to similarity and trust.
The profilepu of a useru has been generated as follows:

• each valuesIu(c) is the percentage of reviews in the
categoryc provided byu;

• Au is assigned from three possible values, namely
OPEN , CLOSED andSECRET , such that the prob-
ability of assigning the valueOPEN (resp.CLOSED,
SECRET ) is set to 0.7 (resp. 0.2, 0.1); we made an
analysis on a set of 200 Facebook groups, obtaining the
percentages above.

• Bu contains two boolean variables, representing the
user’s attitude to: (i) give to the products an average
ranking higher than 3; (ii ) obtain a helpfulness of their
reviews higher than 3;

• in Fu, we insert the actual friends ofu, i.e. the users in
which he trusts.

We have called U2G-comp the version of our algorithm
described in Section IV. In order to analyse the role of
the trust, we have also used a version of our algorithm,
called U2G-diff, that does not consider the trust component
in the compactness, giving importance only to the similarity
(i.e., WSu = 1 for all the usersu). We have repeated the
experiment above on the EPINONS dataset. In this case, we
have assumed the existence of 100 groups, and we have used
WS = 0.5.

Figure 4 shows the results of the simulations in terms of
MAC. We highlight that U2G-comp algorithm improves the
initial MAC of the OSN for the CIAO dataset of about 14%,
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Fig. 4. Variation of MAC obtained with the U2G-comp and U2G-diff
algorithms, for the CIAO and EPINIONS OSNs.

while by using the EPINIONS dataset the difference of the
final improvement is equal to 15 %. Interestingly, in this
situation for the two datasets the U2G-diff algorithm improves
the MAC only in the first steps, finally converging to a value
that is smaller than the initial one. Also in terms of DAC, the
results illustrated in Figure 5 show that U2G-diff performs
significantly worse with respect to U2G-comp, achieving the
values of 0.21 and 0.24 for the CIAO and EPINIONS dataset,
respectively. These results indicate that the use of the trust
measure is essential to produce MAC improvements in real
OSNs using our approach.

We repeated the simulations above, by varying the value
of WS and we considered 7 different values ofWS, namely
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 1. For the CIAO dataset,
Figure 6 shows that the values 0.5 is the best choice for
WS, while the performances decreases ifWS increases,
i.e. if we progressively increase the role of similarity. Also
the analysis performed varying the WS coefficient for the
EPINIONS dataset shows results similar to those produced
for CIAO, confirming that the best choice forWS is 0.5. It is
interestingly to highlight that the choiceWS = 1 corresponds
to disregard trust information. In this case it is equivalent to
use U2G-comp or U2G-diff algorithm.

Finally, we studied the stability of the groups after a period
of application of our matching algorithm. In particular, using
the timestamps associated with each tuple present in the
EPINIONS dataset, we have trained the formation of the
groups by using as training set the first 40,000 tuples. We
applies our algorithm and obtained a MAC equal to 0.45. A
subsequent application of the U2G-comp algorithm to the test
set formed by the remaining 10,000 tuples of the dataset shows
that the stability of the groups is guaranteed, as reported in
Figure 7. In the same figure, we also reported the results of
the analogous experiment performed by using the U2G-diff
algorithm. This latter experiment demonstrates that the use of
the sole similarity as a compactness measure not only leads
to a MAC significantly lower than that obtained using a trust-
based compactness, but also the groups so formed do not show
a real compacteness when analyzed on the basis of the test-set.
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algorithms, for the CIAO and EPINIONS OSNs.
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A. Computational Performance

We conclude the discussion of experimental results by
illustrating on the computational performance of our approach.
All the experiments presented in this paper were executed
on a 2Ghz I7 Intel Processor equipped with 8GB RAM.
The time required for all the experiments presented in this
section roughly amounts to 3 seconds per epoch. In addition,
previous experiment show that 3-4 epochs are usually needed
for producing the optimal solution and, therefore, we can
conclude that our approach seems efficient on real life OSNs.

VI. D ISCUSSION ANDCONCLUSION

In this paper, we presented a User-to-Group matching
algorithm, that allows a set of software agents associated
with OSN users to dynamically and autonomously manage the
evolution of the groups, by detecting for each user the most
suitable groups to join with based on two measures, namely
compactness and similarity. Moreover, the agents operate on
behalf of the group administrators, such that a group agent
accepts only those join requests that come from users whose
profiles are compatible with the profile of the group. Our
experiments on real social network data clearly showed that
the execution of the matching algorithm increases the internal
compactness of the groups composing the social network. In
detail, we observe that:

1) The U2G algorithm is easy to implement and it quickly
converges. Both these two features are particularly rele-

vant in a real OSN (consisting of millions of users and
thousands of groups).

2) The U2G algorithm is alsoflexiblebecause, with some
simple modifications, it can implement different cost
functions (e.g., similarity, trust or a combination of
them) to associate users with groups.

3) In line with some results from Recommender System
literature [49], trust and similarity can be profitably
combined to yield more accurate results. Our exper-
iments provide evidence that when the compactness
measure is used, we achieve an increase of MAC of
about 23% with respect to a merely random assignment
of users to groups. The usage of similarity alone yields
an improvement of MAC in the order of about 14%.

Roughly speaking, the experimental results support our
hypothesis that forming groups on the basis of the only user
similarity is not the best choice to obtain intra-group compact-
ness, and that a significant improvement of such a compactness
can be easily achieved by considering trust measures.

The experiments prove that the use of our algorithm, which
leads the users to form aggregation based on our notion of
compactness, actually creates compact aggregations. In fact,
we experimentally proved that the aggregation formed on
the basis of a training data set remains stable also in the
subsequent periods of time, showing that the users in a group
with high compactness maintain both high similarity and high
trust. We have also shown the this property is valid only by
introducing trust in the definition of the compactness measure.
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[40] G. Lax and G. Sarné, “CellTrust: a reputation model forC2C com-
merce,” Electronic Commerce Research, vol. 8, no. 4, pp. 193–216,
2006.

[41] L. Vercouter and G. Muller, “Liar: achieving social control in open
and decentralized multiagent systems,”Applied Artificial Intelligence,
vol. 24, no. 8, pp. 723–768, 2010.
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