Questo sito utilizza cookie tecnici propri e di terze parti, necessari al suo funzionamento, e, con il tuo consenso, cookie di profilazione ed altri strumenti di tracciamento di terze parti, utili per esporre video ed analizzare il traffico al fine di misurare l'efficacia delle attività di comunicazione istituzionale. Puoi rifiutare i cookie non necessari e di profilazione cliccando su "Solo cookie tecnici". Puoi scegliere di acconsentirne l'utilizzo cliccando su "Accetta tutti" oppure puoi personalizzare le tue scelte cliccando su "Personalizza".
Per maggiori informazioni consulta la nostra privacy policy.

Solo cookie tecnici Personalizza Accetta tutti

vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

12 CFU a scelta SSD ING-INF/02_ING-INF/03

Corso Ingegneria Informatica e dei sistemi per le Telecomunicazioni
Curriculum Curriculum unico
Orientamento Tecnologie per le comunicazioni ottiche e wireless
Anno Accademico 2021/2022

Modulo: Laboratorio di progettazione di dispositivi ottici e wireless

Corso Ingegneria Informatica e dei sistemi per le Telecomunicazioni
Curriculum Curriculum unico
Orientamento Tecnologie per le comunicazioni ottiche e wireless
Anno Accademico 2021/2022
Crediti 6
Settore Scientifico Disciplinare ING-INF/02
Anno Secondo anno
Unità temporale Secondo semestre
Ore aula 48
Attività formativa Attività formative caratterizzanti

Canale unico

Docente Martina BEVACQUA
Obiettivi Obiettivi formativi:
Il corso intende approfondire la conoscenza dei campi elettromagnetici in ambiti applicativi emergenti, quali Internet of Things (IoT) e 5G, nonché di tecnologie emergenti quali cristalli fotonici e metamateriali.
Gli studenti impareranno a dimensionare e progettare: antenne e sistemi a microonde per le telecomunicazioni; reti e circuiti di beam forming ed elementi radianti per applicazioni 5G e IoT; dispositivi ottici per le TLC e la sensoristica.
Sono forniti strumenti teorici sul funzionamento dei metodi numerici alla base dei software CAD di simulazione elettromagnetica utilizzati per lo sviluppo delle attività progettuali. Infine, è prevista una attività di laboratorio atta ad approfondire le conoscenze relative alla propagazione dei campi elettromagnetici sia alle frequenze ottiche sia alle microonde.

Conoscenza e comprensione: a seguito del superamento dell’esame, lo studente conosce gli strumenti per la progettazione di sistemi a microonde per le telecomunicazioni.
Capacità di applicare conoscenze: a seguito del superamento dell’esame, lo studente è in grado di dimensionare un’antenna con date specifiche, ovvero una rete di alimentazione per una schiera di antenne; di simulare il comportamento radioattivo dell'antenna; di misurare parametri caratteristici delle antenne (guadagno, diagramma di radiazione, polarizzazione) e, infine, di utilizzare strumenti come l’analizzatore di rete vettoriale.
Autonomia di giudizio: per il superamento dell'esame lo studente deve rispondere autonomamente a domande teoriche, analitiche e progettuali a risposta libera ed è quindi portato a sviluppare autonomia di giudizio sulla completezza, la profondità e la correttezza delle risposte liberamente fornite.
Abilità comunicative: è in grado di illustrare le motivazioni teoriche e tecniche che sono alla base della progettazione dei dispositivi trattati.
Capacità di apprendimento: a seguito del superamento dell’esame, lo studente è in grado di progettare in autonomia dispositivi ottici e wireless.

Modalità di accertamento e valutazione:
Gli esami di accertamento e di valutazione consistono nella valutazione di relazioni di laboratorio e relazioni di progetto, nonché di in una prova orale volta ad accertare la comprensione dei principi di funzionamento e dei metodi adottati per l’analisi e la progettazione.
Le relazioni saranno valutate sulla base del livello di dettaglio fornito.
Ai fine del superamento dell’esame con votazione minima di 18/30 è necessario che le conoscenze/competenze della materia siano almeno ad un livello elementare. E’ attribuito un voto compreso fra 20/30 e 24/30 quando lo studente possieda competenze elementari sugli strumenti di progettazione adottati e le relazioni di progetto e laboratorio siano redatte in modo discreto. E’ attribuito un voto compreso fra 25/30 e 30/30 quando lo studente sia in grado di dimensionare e progettare in autonomia i dispositivi trattati e dimostri buone competenze nella comprensione fisica degli argomenti. Agli studenti che abbiano acquisito competenze eccellenti può essere attribuita la lode.
Programma Rappresentazioni matriciali di una rete a microonde: Matrice Z, matrice ABCD, Matrice S, proprietà della matrice S. Dispositivi reciproci e senza perdite, legame tra la matrice S e Z, spostamento dei piani di riferimento. Esercizi.
Carta di Smith. Adattamento di impedenza tramite la carta di smith. Esercizi.
Progettazione di un filtro a microonde: Strutture periodiche e insertion loss method. Esercizi.
Metodi numerici per l’elettromagnetismo: MOM, FEM e FDM.
Analizzatore vettoriale: principio di funzionamento, calibrazione e misura dei parametri S di antenne e filtri. Esperienze in laboratorio.
Uso di CAD numerici per la simulazione elettromagnetica di dispositivi quali antenne, filtri, guide d’onda etc. Simulazioni parametriche.
Applicazioni: simulazione di un MRI birdcage coil, forno a microonde, beamforming network di un array di antenne, mapped dielectric distribution e lenti.
Testi docente N.D.
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale No
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Modulo: Sistemi di telecomunicazioni a larga banda

Corso Ingegneria Informatica e dei sistemi per le Telecomunicazioni
Curriculum Curriculum unico
Orientamento Tecnologie per le comunicazioni ottiche e wireless
Anno Accademico 2021/2022
Crediti 6
Settore Scientifico Disciplinare ING-INF/03
Anno Secondo anno
Unità temporale Secondo semestre
Ore aula 48
Attività formativa Attività formative caratterizzanti

Canale unico

Erogazione 1001479 Multimedia Internet in Ingegneria Informatica e dei sistemi per le Telecomunicazioni LM-27 RUGGERI GIUSEPPE
Docente Giuseppe RUGGERI
Obiettivi Obiettivi formativi: Al termine del corso, lo studente possiede le conoscenze di base degli attuali e futuri sistemi di telecomunicazione digitali. Conosce le caratteristiche dei principali mezzi trasmissivi adottati per la realizzazione dei sistemi di telecomunicazioni. Conosce le tecniche di multiplazione comunemente usate. Conosce I principali standard di codifica dei segnali Multimediali. Sa caratterizzare il profilo di traffico generato da una sorgente Multimediale. Conosce i parametri chiave per definire la qualità del servizio a livello IP. Conosce i protocolli, le tecnologie e le architetture per la trasmissione dei contenuti Multimediali su IP. Conosce le tecniche di scheduling e di gestione delle code presenti in letteratura nonché dei modelli matematici costruiti per analizzarne le performance, sia in presenza traffico di tipo UDP che TCP. Conosce i modelli per il supporto della Qualità del Servizio (QoS) in Internet: Intserv e Diffserv. Conosce dei sistemi IP over ATM, MPLS, IP over SDH. Possiede le conoscenze per assemblare, a partire da componenti elettroniche commerciale, un piccolo router e dotarlo di sistema operativo open source (OpenWRT, ZeroShell).

Capacità di applicare conoscenze e competenze: Dopo il superamento dell’esame lo studente è in grado di ideare e sostenere argomentazioni sulla scelta più opportuna dei mezzi trasmissivi da utilizzare, sulla scelta della tecnologia di multiplazione da adottare, sui meccanismi. Sa scegliere in maniera opportuna il codificatore multimediale da utilizzare, e di questo sa stimare il profilo di traffico. Sa gestire la QoS a livello IP, scegliendo propriamente tecnologie, algoritmi e protocolli da utilizzare. È in grado di progettare costruire e configurare un piccolo router partendo da componenti off the shelf e software open source.

Autonomia di giudizio: Dopo il superamento dell’esame lo studente è in grado di condurre in autonomia l’analisi e la progettazione di un sistema di telecomunicazione multimediale o di sue parti. E’ in grado di analizzarne le criticità di funzionamento. Di proporne modifiche al fine di migliorare la QoS, di supportare nuovi servizi, o di incrementarne la capacità.

Abilità comunicative: a seguito del superamento dell’esame lo studente è in grado di illustrare le motivazioni teoriche e tecniche che sono alla base dei moderni sistemi di telecomunicazione multimediali.

Capacità di apprendimento: a seguito del superamento dell’esame, lo studente è in grado di apprendere in autonomia possibili evoluzioni delle tecnologie presentate durante il corso e di applicare le metodologie di valutazione apprese a nuove tecnologie.

Modalità di accertamento e valutazione: Gli esami di accertamento e di valutazione consiste in una prova progettuale, da svolgere di gruppo ed in una prova orale. La prova orale è volta a valutare la conoscenza degli aspetti teorici del corso ed il conseguimento dei relativi obiettivi. La prova progettuale è volta ad accertare la capacità di mettere in pratica le conoscenze teoriche acquisite mediante la progettazione/realizzazione/configurazione di un router o di un altro componente di rete.

Al fine del superamento dell’esame con votazione minima di 18/30 è necessario che le conoscenze/competenze della materia siano almeno ad un livello elementare. È attribuito un voto compreso fra 20/30 e 24/30 quando lo studente sia in grado di presentare in maniera esaustiva gli argomenti trattato. È attribuito un voto compreso fra 25/30 e 27/30 quando lo studente, oltre a quanto richiesto in precedenza, sia anche in grado di approntare in autonomia alcune soluzione progettuali per rispondere a dei casi d’uso proposti dal docente. È attribuito un voto compreso fra 27/30 e 30/30 quando lo studente, oltre a quanto già richiesto in precedenza, sia anche in grado di svolgere correttamente la parte progettuale. Agli studenti che abbiano acquisito competenze eccellenti testimoniate dalle modalità con cui è stato realizzato e discusso il progetto può essere attribuita la lode.
Programma 1 - Richiami sui mezzi trasmissivi (1 CFU): Richiami di teoria della propagazione su linee bifilari omogenee; linee in cavo a coppie simmetriche; fibre ottiche.

2 - La Rete di Trasporto (1 CFU). Tecniche di multiplazione, PCM e PDH, SDH, multiplazione, apparati e reti, sincronizzazione nelle reti numeriche. Sistemi di trasmissione WDM. Reti ottiche. Architettura dei nodi di commutazione.

3- La rete di accesso (0.5 CFU): I sitemi xDSL, I sistemi cable modem. I sistemi FTTx.

4 - Sorgenti Multimediali (1 CFU): Codificatori e modelli di traffico. Introduzione. Tecniche VBR di codifica della voce. Standards MPEG (Audio e Video). Modelli di traffico multimediali.

5 – La Qualità Del Servizio in IP (1.5 CFU): Parametri di qualità di servio: Throughput, Delay, Jitter, Skew. Il buffer di Playout. Il protocollo RTP/RTCP. Shaping, Policing, Scheduling, end-to-end congestion control, Active Queue Management. MPLS

6 - Architetture per il supporto della QoS in reti IP (0.5 CFU): Rete a servizi Integrati (Intserv), RSVP, Rete a servizi differenziati Diffserv.

7 – Progettazione e prototipazione di piccoli router (3 CFU). Componenti per dispositivi dispositivi di rete; Sistemi operativi per dispositivi e terminali wireless (Linux, Open WRT, Router OS, …); Richiami su compilazione e cross-compilazione; Linee guida per la realizzazione di un firmware per dispositivi di rete; Esempi di configurazione e testing;
Testi docente [1] Achille Patavina, “Reti di Telecomunicazioni”, Mc-Graw Hill.
[2] “Engineering Internet QoS”, by Sanjay Jha and Mahbub Hassan. ISBN 1-58053-341-8
[3] Draft e RFC IETF direttamente disponibili sul sito www.ietf.org.
[4] Roger L. Freeman, “Telecommunication system Engineering”, Wiley
[5] Appunti del corso forniti dal docente. Materiale bibliografico aggiuntivo, fornito dal docente quando necessario.
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale
Valutazione test attitudinale No
Valutazione progetto
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Impostazione cookie

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1693217/3252

Fax +39 0965.1693247

Indirizzo e-mail


Protocollo

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Didattica e orientamento

Tel +39 0965.16933385

Fax +39 0965.1693247

Indirizzo e-mail

Indirizzo e-mail

Segreteria studenti

Tel +39 0965.1691475

Fax +39 0965.1691474

Indirizzo e-mail

Amministrazione

Tel +39 0965.1693214

Fax +39 0965.1693247

Indirizzo e-mail


Ricerca

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Social

Facebook

Twitter

YouTube

Instagram