Introduzione al trattamento dei Segnali (Crediti 2)
Generalità sul trattamento dei segnali, segnali analogici, campionamento e conversione AD e DA, segnali a tempo discreto (numerici), equazioni alle differenze lineari a coefficienti costanti, rappresentazione nel dominio del tempo e della frequenza, segnali aleatori multi-dimensionali, statistiche di ordine superiore al secondo, processi stocastici, concetti di teoria della stima, metodo della massima verosimiglianza, stima del minimo errore quadratico medio, metodo della massima probabilità a posteriori, elementi di teoria dell’informazione, entropia informazionale, informazione mutua, negentropia, correntropia, metodo di stima a massima entropia, metodi di ottimizzazione.
Rappresentazione di sistemi digitali mediante grafi e schemi a blocchi, strutture di rete fondamentali per sistemi FIR e IIR.
Algoritmi di Soft Computing (Crediti 1)
Algoritmi Genetici ed Evolutivi: generalità e metodologie d’impiego, operatori di riproduzione cross-over e mutazione, spazio di ricerca e Fitness Landscape, Teorema dello Schema, Building block hypothesis, diagramma di flusso di AG.
Sistemi adattivi, stima del gradiente, metodi iterativi, apprendimento Hebbiano, reti di Kohonen ed auto-organizzanti, reti dinamiche ricorrenti, reti di Hopfield.
Pattern recognition: formulazioni, classificatori lineari e non lineari, trattamento dell’incertezza, problemi rappresentativi in diversi ambiti di ricerca.
Analisi Multirisoluzione e Multidimensionale (Crediti 2)
Algoritmi avanzati per l’elaborazione dei segnali, studio serie temporali, Analisi nel dominio della frequenza, Trasformata di Fourier, Short-Time Fourier Transform, analisi di segnali nel dominio tempo-frequenza, elaborazione di segnali non stazionari, segnali e sistemi non lineari, trasformata Wavelet Continua e Discreta, decomposizione Wavelet, applicazioni pratiche della trasformata Wavelet, Principal Component Analysis (PCA), Independent Component Analysis (ICA), applicazioni pratiche PCA e ICA, serie temporali e dinamiche caotiche, circuiti elementari caotici.
Implementazione numerica degli algoritmi (Crediti 1)
Introduzione al MATLAB, nozioni preliminari, potenzialità e limiti del software, programmare con l’editor di MATLAB; introduzione all’uso dei Toolboxes: Genetic Algorithm, Neural Networks, Fuzzy Logic, Signal Processing, Wavelet, Algoritmi PCA e ICA, EEGLAB, ICA-lab, FAST-ICA.
Ultimo aggiornamento: 19-09-2023