Questo sito utilizza cookie tecnici e di terze parti. Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy. Proseguendo la navigazione o cliccando su "Chiudi" acconsenti all'uso dei cookie. Chiudi
vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

METODI MATEMATICI PER L'INGEGNERIA

Corso Ingegneria Informatica e dei sistemi per le Telecomunicazioni
Curriculum Curriculum unico
Orientamento Reti ed applicazioni
Anno Accademico 2022/2023
Crediti 6
Settore Scientifico Disciplinare MAT/05
Anno Primo anno
Unità temporale Primo semestre
Ore aula 48
Attività formativa Attività formative affini ed integrative

Canale unico

Erogazione 1001474 Metodi Matematici e Fondamenti di ottica per le telecomunicazioni in Ingegneria Informatica e dei sistemi per le Telecomunicazioni LM-27 GIUFFRE' SOFIA, FAGGIO GIULIANA
Docente Sofia GIUFFRE'
Obiettivi OBIETTIVI FORMATIVI PER IL MODULO METODI MATEMATICI PER L'INGEGNERIA

Il Corso si propone di fornire una adeguata conoscenza dei principi e delle metodologie della teoria delle funzioni di variabile complessa e della Trasformata Zeta, la cui conoscenza è essenziale per una maggior comprensione e consapevolezza dei medesimi nei corsi ingegneristici. Ulteriore obiettivo è una adeguata conoscenza di sistemi aleatori di interesse informatico, elettronico e telematico.

Conoscenza e comprensione: a seguito del superamento dell’esame, lo studente conosce i principi fondamentali della teoria delle funzioni di variabile complessa, che offre una serie di strumenti matematici essenziali per la risoluzione di problemi ingegneristici, e della Trasformata Zeta, utilizzata nell’elaborazione numerica dei segnali digitali. Conosce inoltre i principali modelli a coda.

Capacità di applicare conoscenze: a seguito del superamento dell’esame, lo studente è in grado di applicare le conoscenze teoriche acquisite a problemi legati alla risoluzione di integrali, alle successioni definite per ricorrenza e alla teoria delle code.

Autonomia di giudizio: per il superamento dell’esame lo studente deve essere in grado di riconoscere le situazioni e i problemi in cui le tecniche basilari della teoria delle funzioni di variabile complessa, della trasformata Z e dei processi nascita-morte possono essere applicate.

Abilità comunicative: a seguito del superamento dell’esame, lo studente è in grado di comunicare le conoscenze acquisite attraverso un linguaggio tecnico-scientifico adeguato a interlocutori specialisti e non specialisti.

Capacità di apprendimento: a seguito del superamento dell’esame, lo studente è in grado di approfondire in autonomia le conoscenze acquisite e di applicare le stesse alla conoscenza di nuovi argomenti da affrontare nella prosecuzione del proprio percorso di studi.

Modalità di accertamento e valutazione per il modulo di Metodi Matematici per l'Ingegneria

L’esame consiste in due prove, una scritta e una orale.
La prova scritta ha lo scopo di accertare la capacità acquisite dallo studente nel risolvere esercizi sulle applicazioni del Teorema dei residui, sulla Trasformata Z, sui modelli di code. Voto massimo 30/30. Il superamento della prova scritta consente l’accesso alla prova orale.

La prova orale è volta ad accertare il livello di conoscenza e comprensione dei contenuti del corso, di valutare l'autonomia di giudizio, la capacità di apprendimento e le abilità comunicative. La prova orale consiste nella discussione della prova scritta e in domande teoriche sui contenuti del corso. Voto massimo 30/30
Il voto finale delle prove di esame è determinato tenendo conto sia della prova scritta che della prova orale.

Modalità di valutazione
30 e lode: conoscenza completa, approfondita e critica degli argomenti, eccellente proprietà di linguaggio, completa ed originale capacità interpretativa, piena capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti;
28 - 30: conoscenza completa e approfondita degli argomenti, ottima proprietà di linguaggio, completa ed efficace capacità interpretativa, in grado di applicare autonomamente le conoscenze per risolvere i problemi proposti;
24 - 27: conoscenza degli argomenti con un buon grado di padronanza, buona proprietà di linguaggio, corretta e sicura capacità interpretativa, buona capacità di applicare in modo corretto la maggior parte delle conoscenze per risolvere i problemi proposti;
20 - 23: conoscenza adeguata degli argomenti ma limitata padronanza degli stessi, soddisfacente proprietà di linguaggio, corretta capacità interpretativa, più che sufficiente capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti;
18 - 19: conoscenza di base degli argomenti principali, conoscenza di base del linguaggio tecnico, sufficiente capacità interpretativa, sufficiente capacità di applicare le conoscenze di base acquisite;
<18 Insufficiente: non possiede una conoscenza accettabile degli argomenti trattati durante il corso.

OBIETTIVI FORMATIVI PER IL MODULO FONDAMENTI DI OTTICA PER LE TELECOMUNICAZIONI

Obiettivi formativi: Il corso di Fondamenti di Ottica per le TLC intende trasferire agli studenti conoscenze dei fondamentali fenomeni fisici che sono alla base del funzionamento dei dispositivi ottici che costituiscono i sistemi di comunicazioni in fibra ottica. Particolare attenzione è rivolta al funzionamento dei dispositivi optoelettronici, quali diodi emettitori di luce, diodi laser e fotorivelatori, e delle fibre ottiche.

Conoscenza e comprensione: al superamento dell’esame lo studente conosce e ha compreso il funzionamento dei diodi emettitori di luce, diodi laser e fotorivelatori e delle fibre ottiche.

Capacità di applicare conoscenze: al superamento dell’esame lo studente è in grado di individuare quali sono i principi fisici che stanno alla base del funzionamento di diodi emettitori di luce, diodi laser, fotorivelatori e fibre ottiche.

Autonomia di giudizio: al superamento dell’esame lo studente è in grado di esaminare criticamente quali sono i parametri di funzionamento ottimali che ciascun dispositivo ottico deve possedere per realizzare un ben determinato sistema di comunicazione in fibra ottica.

Abilità comunicative: al superamento dell’esame lo studente è in grado di comunicare quali sono le motivazioni teoriche e tecniche che sono alla base del funzionamento dei dispositivi ottici necessari alla realizzazione di un sistema di comunicazione in fibra ottica.

Capacità di apprendimento: a seguito del superamento dell’esame, lo studente è in grado di approfondire in autonomia le conoscenze acquisite e di applicarle autonomamente alla scelta di dispositivi ottici le cui caratteristiche di funzionamento soddisfino la progettazione di un sistema di comunicazione in fibra ottica dalle specifiche caratteristiche.

Modalità di accertamento e valutazione
L’esame consiste in due prove, una scritta e una orale.
La prova scritta ha lo scopo di accertare la capacità dello studente di applicare le conoscenze acquisite durante il corso alla risoluzione di semplici problemi riguardanti la propagazione della luce e le proprietà ottiche dei semiconduttori. Il superamento della prova scritta consente l’accesso alla prova orale.
La prova orale è volta ad accertare il livello di conoscenza e comprensione dei contenuti del corso, di valutare l'autonomia di giudizio, la capacità di apprendimento e le abilità comunicative. La prova orale consiste nella discussione della prova scritta, in domande e/o esercizi sui contenuti del corso.
Il voto finale delle prove di esame è determinato tenendo conto sia della prova scritta che della prova orale.

Al fine del superamento dell’esame con votazione minima di 18/30 è necessario che le conoscenze/competenze della materia siano almeno ad un livello elementare, sia per la parte scritta che per quella orale.
E’ attribuito un voto compreso fra 20/30 e 24/30 quando lo studente sia in grado di svolgere correttamente la parte scritta, ma possegga competenze elementari nella parte teorica.
E’ attribuito un voto compreso fra 25/30 e 30/30 quando lo studente sia in grado di svolgere correttamente la parte scritta e dimostri buone competenze nella parte teorica.
Agli studenti che abbiano acquisito competenze eccellenti sia nella parte scritta che in quella teorica può essere attribuita la lode



Programma Metodi Matematici per l'Ingegneria

Funzioni complesse di variabile complessa.
Le funzioni elementari del piano complesso. Condizioni di Cauchy-Riemann. Funzioni olomorfe. Richiami alle curve piane e agli integrali curvilinei. Integrazione nel piano complesso. Teorema di Cauchy-Goursat. I e II formula integrale di Cauchy. Richiami alle serie di potenze nel campo complesso. Funzioni analitiche. Serie di Taylor. Teorema di Taylor. Serie bilatere. Serie di Laurent. Sviluppo in serie di Laurent. Singolarità isolate e classificazione. Residui. La formula dei residui nei poli. Singolarità all'infinito e classificazione. Decomposizione in fratti semplici mediante i residui. Teorema dei residui e corollario. Applicazioni del teorema dei residui.
Trasformata zeta: definizione, proprietà, esempi. Applicazioni della trasformata zeta alle successioni definite per ricorrenza ed alle equazioni alle differenze. (4 CFU)

Introduzione alla teoria delle code.
Caratteristiche e struttura di un sistema a coda. Notazioni di Kendall. Indici di efficienza. Legge di Little. Coda D/D/1. Il ruolo della distribuzione esponenziale. Processi Stocastici e loro classificazione. Processi di Poisson. Processi di Markov. Catene di Markov a parametro continuo. Equazioni di Chapman-Kolmogorov. Equazioni di bilanciamento del flusso. Distribuzione stazionaria. Processi di nascita-morte. Processi di pura nascita. Processi di sole uscite. Coda M/M/1. Varianti del modello M/M/1: M/M/1/k -sistema a capacità finita. M/M/1/infinito/R - sorgente di arrivi finita. Coda M/M/s. Variante del modello M/M/s: Coda M/M/s/k - sistema a capacità finita. Modello di coda M/G/1, con distribuzione generica per i tempi di servizio. (2 CFU)

Testi docente Metodi Matematici per l'Ingegneria
G.Di Fazio, M.Frasca, Metodi Matematici per l'Ingegneria, Monduzzi Editore
G.Teppati, Esercitazioni di Analisi Matematica III, Progetto Leonardo.
F.S. Hillier and G.J.Lieberman, Introduzione alla Ricerca Operativa, Collana di Matematica e Statistica Franco Angeli.

Erogazione tradizionale No
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale No
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Descrizione Descrizione
Trasformata Z (esercitazioni) Descrizione

Elenco dei rievimenti:

Descrizione Avviso
Ricevimenti di: Sofia Giuffre'
Il ricevimento ha luogo il giovedi' alle 11:00 presso lo studio del docente. E' preferibile chiedere conferma via e-mail.
Su richiesta, è possibile concordare un ricevimento in altro giorno e orario.
Nessuna lezione pubblicata
Codice insegnamento online pubblicato. Per visualizzarlo, autenticarsi in area riservata.

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1693217/3252

Fax +39 0965.1693247

Indirizzo e-mail


Protocollo

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Didattica e orientamento

Tel +39 0965.1693386/3385

Fax +39 0965.1693247

Indirizzo e-mail


Segreteria studenti

Tel +39 0965.1691475

Fax +39 0965.1691474

Indirizzo e-mail

Amministrazione

Tel +39 0965.1693214

Fax +39 0965.1693247

Indirizzo e-mail


Ricerca

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Social

Facebook

Twitter

YouTube

Instagram