Questo sito utilizza cookie tecnici propri e di terze parti, necessari al suo funzionamento, e, con il tuo consenso, cookie di profilazione ed altri strumenti di tracciamento di terze parti, utili per esporre video ed analizzare il traffico al fine di misurare l'efficacia delle attività di comunicazione istituzionale. Puoi rifiutare i cookie non necessari e di profilazione cliccando su "Solo cookie tecnici". Puoi scegliere di acconsentirne l'utilizzo cliccando su "Accetta tutti" oppure puoi personalizzare le tue scelte cliccando su "Personalizza".
Per maggiori informazioni consulta la nostra privacy policy.

Solo cookie tecnici Personalizza Accetta tutti

vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

ANALISI MATEMATICA II e METODI STATISTICI PER L'INGEGNERIA

Corso Ingegneria Industriale
Curriculum Industriale - Infrastrutturale
Orientamento Orientamento unico
Anno Accademico 2020/2021

Modulo: ANALISI MATEMATICA II

Corso Ingegneria Industriale
Curriculum Industriale - Infrastrutturale
Orientamento Orientamento unico
Anno Accademico 2020/2021
Crediti 6
Settore Scientifico Disciplinare MAT/05
Anno Primo anno
Unità temporale Secondo semestre
Ore aula 48
Attività formativa Attività formative di base

Canale unico

Docente GIUSEPPINA BARLETTA
Obiettivi Il modulo di Analisi Matematica II si propone di fornire allo Studente quei concetti fondamentali del calcolo differenziale ed integrale per funzioni reali di più variabili reali. Le tematiche di base verranno introdotte a partire dagli analoghi concetti già studiati per le funzioni di una variabile (quali limiti, derivate, integrali, studi di funzioni elementari) per passare gradualmente ad approfondimenti mirati che permetteranno lo studio di problematiche anche complesse inerenti lo studio dei massimi e minimi per una funzione, le equazioni differenziali, il calcolo di integrali doppi e tripli, la determinazione della terna intrinseca di una curva.
Programma Analisi Matematica II
1 CFU. Funzioni reali di più variabili reali. Elementi di topologia nel piano e nello spazio. Limite e continuità. Teoremi di esistenza degli zeri e di Weierstrass. Derivate parziali, successive, direzionali. Teorema di Schwarz. Gradiente. Differenziale. Funzioni composte. Formula di Taylor del secondo ordine.
Massimi e minimi relativi, teorema di Fermat. Condizioni sufficienti per un estremo relativo. Ricerca del massimo e del minimo assoluto.
2 CFU. Integrale generale di un’equazione differenziale ordinaria (E.D.O.). Problema di Cauchy e ai limiti. Esistenza e unicità locale e globale. Il teorema di Cauchy di esistenza e unicità locale e globale. E.D.O. a variabili separabili. Proprietà delle E.D.O. lineari. E.D.O. lineari del primo e del secondo ordine. Metodi di somiglianza e di variazione delle costanti.
Successioni di funzioni: convergenza puntuale ed uniforme. Serie di funzioni: convergenza puntuale, uniforme e totale. Teoremi della continuità, della derivabilità, del passaggio al limite sotto il segno di integrale. Serie di potenze e di Fourier.
1 CFU. Integrali doppi e tripli. Integrali su domini normali. Integrale di funzioni continue. Formule di riduzione e cambiamento di variabili per gli integrali doppi e tripli. Volume di un solido di rotazione.
2 CFU. Elementi di calcolo vettoriale. Curve regolari. Lunghezza di una curva. Curve orientate. Ascissa curvilinea. Integrale curvilineo di una funzione. Versore tangente, normale e binormale. Curvature e torsione.
Forme differenziali. Campi vettoriali. Integrale di una forma differenziale Campi conservativi e potenziale. Lavoro di un campo conservativo. Superficie regolari. Piano tangente e versore normale. Area di una superficie. Integrali di superficie. Formule di Gauss-Green nel piano. Area di un dominio regolare. Teorema della divergenza e formula di Stokes. Formula di integrazione per parti.
Testi docente • M. Bertsch, R. Dal Passo, L. Giacomelli, Analisi Matematica, McGraw-Hill, Milano 2007.
• N. Fusco, P. Marcellini, C. Sbordone, Elementi di Analisi Matematica due, Liguori Editore, Napoli 2001.
• Claudio Canuto, Anita Tabacco, Mathematical Analysis II, Springer 2008.
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale No
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online pubblicato. Per visualizzarlo, autenticarsi in area riservata.

Modulo: METODI STATISTICI PER L'INGEGNERIA

Corso Ingegneria Industriale
Curriculum Industriale - Infrastrutturale
Orientamento Orientamento unico
Anno Accademico 2020/2021
Crediti 3
Settore Scientifico Disciplinare MAT/05
Anno Primo anno
Unità temporale Secondo semestre
Ore aula 24
Attività formativa Attività formative di base

Canale unico

Docente GIUSEPPINA BARLETTA
Obiettivi Il modulo di Metodi statistici per l’Ingegneria si propone di fornire allo Studente i concetti base della statistica. Una volta introdotti i concetti fondamentali della probabilità (propedeutici alla costruzione e comprensione di quelli della statistica), si passerà alla statistica descrittiva. Si daranno anche i concetti base della statistica inferenziale e semplici applicazioni del TLC. Tutti gli argomenti verranno introdotti ricorrendo a numerosi esempi, allo scopo di facilitare la comprensione immediata da parte degli Studenti e metterli subito nelle condizioni di affrontare in maniera autonoma i problemi inerenti gli argomenti trattati.
Programma Metodi statistici per l’Ingegneria
1 CFU Assiomi della probabilità. Costruzione di misure di probabilità: la definizione classica. Variabili aleatorie. Funzione di ripartizione e sue proprietà. Variabili aleatorie discrete: funzione di probabilità di massa. Variabili aleatorie continue: funzione di densità di probabilità e sua caratterizzazione. Valor medio di variabili aleatorie e di funzioni di variabili aleatorie. Varianza. Alcune distribuzioni: binomiale, geometrica, di Poisson, uniforme continua, esponenziale. Distribuzione di Poisson come approssimazione della distribuzione binomiale. Distribuzione normale e uso delle tavole.
Variabili aleatorie doppie. Funzione di ripartizione, di probabilità e di densità congiunte e marginali. Covarianza e coefficiente di correlazione. Indipendenza di variabili aleatorie.
2 CFU Statistica descrittiva: popolazioni e campioni; frequenze assolute e relative; grafici e tabelle. Statistiche di misura centrale: media, mediana e moda campionarie. Statistiche di deviazione: varianza e deviazione campionarie. Insiemi di dati bivariati. Diagramma a dispersione. Coefficiente di correlazione campionaria. Retta di regressione.
Cenni di inferenza statistica. Campione aleatorio. Valor medio e varianza della media campionaria. Valor medio della varianza campionaria. Teorema del limite centrale. Distribuzione della media campionaria.
Testi docente • M. Bertsch, R. Dal Passo, L. Giacomelli, Analisi Matematica, McGraw-Hill, Milano 2007.
• N. Fusco, P. Marcellini, C. Sbordone, Elementi di Analisi Matematica due, Liguori Editore, Napoli 2001.
• Claudio Canuto, Anita Tabacco, Mathematical Analysis II, Springer 2008.
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale No
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online pubblicato. Per visualizzarlo, autenticarsi in area riservata.

Impostazione cookie

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1693217/3252

Fax +39 0965.1693247

Indirizzo e-mail


Protocollo

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Didattica e orientamento

Tel +39 0965.16933385

Fax +39 0965.1693247

Indirizzo e-mail

Indirizzo e-mail

Segreteria studenti

Tel +39 0965.1691475

Fax +39 0965.1691474

Indirizzo e-mail

Amministrazione

Tel +39 0965.1693214

Fax +39 0965.1693247

Indirizzo e-mail


Ricerca

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Social

Facebook

Twitter

YouTube

Instagram