Questo sito utilizza cookie tecnici e di terze parti. Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy. Proseguendo la navigazione o cliccando su "Chiudi" acconsenti all'uso dei cookie. Chiudi
vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

ANALISI MATEMATICA II & CALCOLO DELLE PROBABILITA'

Corso Ingegneria informatica, elettronica e delle telecomunicazioni
Curriculum Internet e Sicurezza
Orientamento Orientamento unico
Anno Accademico 2021/2022

Modulo: ANALISI MATEMATICA II

Corso Ingegneria informatica, elettronica e delle telecomunicazioni
Curriculum Internet e Sicurezza
Orientamento Orientamento unico
Anno Accademico 2021/2022
Crediti 6
Settore Scientifico Disciplinare MAT/05
Anno Primo anno
Unità temporale Secondo semestre
Ore aula 48
Attività formativa Attività formative di base

Canale unico

Docente LUISA ANGELA MARIA FATTORUSSO
Obiettivi Obiettivi formativi:
Il modulo di Analisi Matematica 2 intende trasferire agli studenti alcune fondamentali conoscenze degli strumenti di base che l’Analisi Matematica offre per accedere allo studio di problemi e modelli matematici legati a fenomeni fisici ed a problemi dell’ingegneria,con particolare riguardo all’Ingegneria elettronica,informatica e delle Telecomunicazioni.
Partendo dalla conoscenza delle proprieta’ fondamentali delle funzioni di piu’ variabili,quali continuità e differenziabilità e collegandosi alle analoghe conoscenze gia’ acquisite per le funzioni reali di una variabile,gli studenti sono prima posti in condizione di affrontare semplici problemi di ottimizzazione nel caso di funzioni di due o tre variabil e poi di saper calcolare un integrale doppio o triplo;successivamente,dalla conoscenza delle curve regolari nello spazio e nel piano,gli studenti sono condotti ad apprendere il calcolo degli integrali curvilinei di una funzione scalare o vettoriale,passando anche dalla conoscenza delle forme differenziali lineari e dei differenziali esatti e dei loro integrali,con riferimento alla applicazione ai campi di forze conservativi e non ed ad alcune loro proprietà.
Dopo un breve passaggio dalla definizione di superficie regolare prima e di Integrale superficiale poi ,che consentano allo studente di capire il senso di importanti risultati dell’Analisi matematica come i Teoremi di Gauss-Green -Stokes e di alcune loro applicazioni,si affronta lo studio delle equazioni differenziali,soffermandosi sulla risoluzione di alcuni semplici tipologie di quelle del primo ordine prima,per passare a quelle lineari di ordine n poi ed ai problemi di valori iniziali ad esse collegati.
Al fine di introdurre gli studenti alla possibile rappresentazione in serie di una funzione reale,prima e complessa poi, vengono introdotte e studiate le serie di potenze e quelle di Taylor,con I rispettivi criteri di convergenza e successivamente le serie di Fourier,dopo essere passati da alcune conoscenze di base dell’analisi complessa.
L’introduzione e il calcolo della Trasformata di Fourier consente poi agli studenti di ampliare le possibilità di rappresentazione anche a funzioni non periodiche,come I segnali impulsivi.
La trattazione del calcolo differenziale ed integrale in piu’ variabili comprende sempre l’enunciato di definizioni in un numero qualunque di variabili,affinche’ lo studente possa impadronirsi di concetti e notazioni di portata generale;il caso bi- o tridimensionale rimane comunque la linea guida intuitiva,utilizzata sistematicamente in esempi ed esercizi,per favorire la gradualità anche nell’ottica di un eventuale utilizzo successivo nelle materie ingegneristiche.
Per ognuno degli argomenti trattati vengono presentati alcuni esempi di possibili applicazioni pratiche dei calcoli appresi,al fine di indurre nello studente la consapevolezza immediata dell’utilità dello studio che sta facendo ed educarlo all’applicazione dei risultati teorici


Conoscenza e comprensione:
Al seguito del superamento dell’esame,lo studente e’ in grado di usare in autonomia le predette capacità di calcolo e di comprendere la loro applicazione nello studio dei risultati teorici presenti nei corsi delle materie ingegneristiche.
Capacità di applicare conoscenze:
Al seguito del superamento dell’esame,lo studente e’ in grado di usare queste capacità di calcolo per otterere , prima su indicazione dei docenti e successivamente in modalità sempre piu’ autonome, applicazioni pratiche dei risultati teorici presenti nei corsi delle materie ingegneristiche.
Autonomia di giudizio:
Per il superamento dell’esame lo studente deve essere capace autonomamente di individuare la corretta procedura per lo svolgimento di un esercizio relativo alle tematiche studiate durante il corso e di conoscere i presupposti teorici necessari per l’applicabilità della procedura scelta e di verificarne l’esistenza nel caso concreto in studio.
Abilità comunicative:
per il superamento dell’esame lo studente deve essere in grado di illustrare le motivazioni teoriche che sono alla base della procedura di calcolo scelta per l’esecuzione di un esercizio.
Capacità di apprendimento:
La conoscenza delle applicazioni e la capacità di calcolo nei vari ambiti e’ preceduta da una introduzione teorica che consenta allo studente di valutare l’esistenza delle condizioni di applicabilità delle procedure di calcolo che apprende e di giustificarle; vengono inoltre presentati alcuni esempi di possibili applicazioni pratiche dei calcoli appresi,al fine di indurre nello studente la consapevolezza immediata dell’utilità dello studio che sta facendo.
Modalità di accertamento e valutazione:
Gli esami di accertamento e valutazione consistono in una prova scritta volta ad accertare le capacità di calcolo negli ambiti affrontati in programma, giustificando l’esistenza fine deldei presupposti teorici .
voto massimo 30/30;

Per il superamento dell’esame con votazione minima di 18/30 è necessario che le conoscenze/competenze della materia siano almeno ad un livello elementare, sia per la parte di esecuzione degli esercizi che per quella teorica . E’ attribuito un voto compreso fra 20/30 e 24/30 quando lo studente sia in grado di svolgere quasi correttamente la parte di esecuzione degli esercizi ma possegga competenze elementari nella parte teorica. E’ attribuito un voto compreso fra 25/30 e 30/30 quando lo studente sia in grado di svolgere correttamente la parte di esecuzione degli esercizi e dimostri buone competenze nella parte teorica. Agli studenti che abbiano acquisito competenze eccellenti sia nella parte di esecuzione degli esercizi che in quella teorica può essere attribuita la lode.

Il voto finale del corso di Analisi Matematica II e Probabilità è la media pesata, con il numero di crediti, delle votazioni riportate nelle prove scritte dei moduli di Analisi Matematica II e Calcolo delle Probabilità, arrotondata al primo intero successivo. Agli studenti che abbiano acquisito competenze eccellenti in entrambi i moduli può essere attribuita la lode.




Programma N.D.
Testi docente N.D.
Erogazione tradizionale No
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale No
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Modulo: CALCOLO DELLE PROBABILITA'

Corso Ingegneria informatica, elettronica e delle telecomunicazioni
Curriculum Internet e Sicurezza
Orientamento Orientamento unico
Anno Accademico 2021/2022
Crediti 3
Settore Scientifico Disciplinare MAT/05
Anno Primo anno
Unità temporale Secondo semestre
Ore aula 24
Attività formativa Attività formative di base

Canale unico

Docente SOFIA GIUFFRE'
Obiettivi Obiettivi formativi:
Scopo del modulo di Calcolo delle Probabilità è fornire le conoscenze dei fondamenti del Calcolo delle Probabilità, delle principali variabili aleatorie, delle leggi congiunte di variabili aleatorie e dei principali Teoremi Limite.

Conoscenza e comprensione: a seguito del superamento dell’esame, lo studente conosce le basi della teoria matematica della probabilità.

Capacità di applicare conoscenze: a seguito del superamento dell’esame, lo studente è in grado di utilizzare gli strumenti matematici del calcolo delle probabilità, anche al fine di formalizzare e risolvere problemi legati alle discipline strutturali del corso di studio.

Autonomia di giudizio: per il superamento dell’esame lo studente deve essere in grado di individuare la tecnica più appropriata per problemi affetti da incertezza e riconoscere le situazioni e i problemi in cui tali tecniche possono essere applicate.

Abilità comunicative: per il superamento dell’esame lo studente deve essere in grado di conoscere e illustrare con un linguaggio scientifico appropriato le motivazioni teoriche, che sono alla base della tecnica scelta per l’esecuzione di un esercizio, e il ragionamento logico alla base dei principali Teoremi Limite.

Capacità di apprendimento: a seguito del superamento dell’esame, lo studente è in grado di approfondire in autonomia le conoscenze acquisite e di applicare le stesse alla conoscenza di nuovi argomenti, dove intervengono condizioni di variabilità stocastica.

Modalità di accertamento e valutazione:
Gli esami di accertamento e di valutazione del modulo di probabilità consistono in una prova scritta, volta ad accertare le capacità acquisite dallo studente nel presentare teoricamente un argomento e risolvere esercizi sui fondamenti del Calcolo delle Probabilità, sulle principali variabili aleatorie, sulle leggi congiunte di variabili aleatorie e sui principali Teoremi Limite; voto massimo 30/30;

Ai fine del superamento dell’esame con votazione minima di 18/30 è necessario che le conoscenze/competenze della materia siano almeno ad un livello elementare, sia per la parte scritta che per quella orale. E’ attribuito un voto compreso fra 20/30 e 24/30 quando lo studente sia in grado di svolgere correttamente la parte scritta ma possegga competenze elementari nella parte teorica. E’ attribuito un voto compreso fra 25/30 e 30/30 quando lo studente sia in grado di svolgere correttamente la parte scritta e dimostri buone competenze nella parte teorica. Agli studenti che abbiano acquisito competenze eccellenti sia nella parte scritta che in quella teorica può essere attribuita la lode.

Il voto finale del corso di Analisi Matematica II e Probabilità è la media pesata, con il numero di crediti, delle votazioni riportate nelle prove scritte dei moduli di Analisi Matematica II e Calcolo delle Probabilità, arrotondata al primo intero successivo. Agli studenti che abbiano acquisito competenze eccellenti in entrambi i moduli può essere attribuita la lode.
Programma N.D.
Testi docente N.D.
Erogazione tradizionale No
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale No
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1693217/3252

Fax +39 0965.1693247

Indirizzo e-mail


Protocollo

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Didattica e orientamento

Tel +39 0965.1693386/3385

Fax +39 0965.1693247

Indirizzo e-mail


Segreteria studenti

Tel +39 0965.1691475

Fax +39 0965.1691474

Indirizzo e-mail

Amministrazione

Tel +39 0965.1693214

Fax +39 0965.1693247

Indirizzo e-mail


Ricerca

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Social

Facebook

Twitter

YouTube

Instagram