Corso | Ingegneria Elettronica |
Curriculum | ELETTRONICA PER LA BIOMEDICA |
Orientamento | Generale |
Anno Accademico | 2020/2021 |
Crediti | 6 |
Settore Scientifico Disciplinare | MAT/05 |
Anno | Primo anno |
Unità temporale | Primo semestre |
Ore aula | 48 |
Attività formativa | Attività formative affini ed integrative |
Erogazione | 1001474 Metodi Matematici e Fondamenti di ottica per le telecomunicazioni in Ingegneria Informatica e dei sistemi per le Telecomunicazioni LM-27 GIUFFRE' SOFIA, FAGGIO GIULIANA |
Docente | Sofia GIUFFRE' |
Obiettivi | OBIETTIVI FORMATIVI PER IL MODULO FONDAMENTI DI OTTICA PER LE TELECOMUNICAZIONI Obiettivi formativi: Il corso di Fondamenti di Ottica per le TLC intende trasferire agli studenti conoscenze dei fondamentali fenomeni fisici che sono alla base del funzionamento dei dispositivi ottici che costituiscono i sistemi di comunicazioni in fibra ottica. Particolare attenzione è rivolta al funzionamento dei dispositivi optoelettronici, quali diodi emettitori di luce, diodi laser e fotorivelatori, e delle fibre ottiche. Conoscenza e comprensione: al superamento dell’esame lo studente conosce e ha compreso il funzionamento dei diodi emettitori di luce, diodi laser e fotorivelatori e delle fibre ottiche. Capacità di applicare conoscenze: al superamento dell’esame lo studente è in grado di individuare quali sono i principi fisici che stanno alla base del funzionamento di diodi emettitori di luce, diodi laser, fotorivelatori e fibre ottiche. Autonomia di giudizio: al superamento dell’esame lo studente è in grado di esaminare criticamente quali sono i parametri di funzionamento ottimali che ciascun dispositivo ottico deve possedere per realizzare un ben determinato sistema di comunicazione in fibra ottica. Abilità comunicative: al superamento dell’esame lo studente è in grado di comunicare quali sono le motivazioni teoriche e tecniche che sono alla base del funzionamento dei dispositivi ottici necessari alla realizzazione di un sistema di comunicazione in fibra ottica. Capacità di apprendimento: a seguito del superamento dell’esame, lo studente è in grado di approfondire in autonomia le conoscenze acquisite e di applicarle autonomamente alla scelta di dispositivi ottici le cui caratteristiche di funzionamento soddisfino la progettazione di un sistema di comunicazione in fibra ottica dalle specifiche caratteristiche. Modalità di accertamento e valutazione L’esame consiste in due prove, una scritta e una orale. La prova scritta ha lo scopo di accertare la capacità dello studente di applicare le conoscenze acquisite durante il corso alla risoluzione di semplici problemi riguardanti la propagazione della luce e le proprietà ottiche dei semiconduttori. Il superamento della prova scritta consente l’accesso alla prova orale. La prova orale è volta ad accertare il livello di conoscenza e comprensione dei contenuti del corso, di valutare l'autonomia di giudizio, la capacità di apprendimento e le abilità comunicative. La prova orale consiste nella discussione della prova scritta, in domande e/o esercizi sui contenuti del corso. Il voto finale delle prove di esame è determinato tenendo conto sia della prova scritta che della prova orale. Al fine del superamento dell’esame con votazione minima di 18/30 è necessario che le conoscenze/competenze della materia siano almeno ad un livello elementare, sia per la parte scritta che per quella orale. E’ attribuito un voto compreso fra 20/30 e 24/30 quando lo studente sia in grado di svolgere correttamente la parte scritta, ma possegga competenze elementari nella parte teorica. E’ attribuito un voto compreso fra 25/30 e 30/30 quando lo studente sia in grado di svolgere correttamente la parte scritta e dimostri buone competenze nella parte teorica. Agli studenti che abbiano acquisito competenze eccellenti sia nella parte scritta che in quella teorica può essere attribuita la lode |
Programma | PROGRAMMA DEL MODULO METODI MATEMATICI PER L'INGEGNERIA Funzioni complesse di variabile complessa. Le funzioni elementari del piano complesso. Condizioni di Cauchy-Riemann. Funzioni olomorfe. Richiami alle curve piane e agli integrali curvilinei. Integrazione nel piano complesso. Teorema di Cauchy-Goursat. I e II formula integrale di Cauchy. Richiami alle serie di potenze nel campo complesso. Funzioni analitiche. Serie di Taylor. Teorema di Taylor. Serie bilatere. Serie di Laurent. Sviluppo in serie di Laurent. Singolarità isolate e classificazione. Residui. La formula dei residui nei poli. Singolarità all'infinito e classificazione. Decomposizione in fratti semplici mediante i residui. Teorema dei residui e corollario. Applicazioni del teorema dei residui. Trasformata zeta: definizione, proprietà, esempi. Applicazioni della trasformata zeta alle successioni definite per ricorrenza ed alle equazioni alle differenze. (4 CFU) Introduzione alla teoria delle code. Caratteristiche e struttura di un sistema a coda. Notazioni di Kendall. Indici di efficienza. Legge di Little. Coda D/D/1. Il ruolo della distribuzione esponenziale. Processi Stocastici e loro classificazione. Processi di Poisson. Processi di Markov. Catene di Markov a parametro continuo. Equazioni di Chapman-Kolmogorov. Equazioni di bilanciamento del flusso. Distribuzione stazionaria. Processi di nascita-morte. Processi di pura nascita. Processi di sole uscite. Coda M/M/1. Varianti del modello M/M/1: M/M/1/k -sistema a capacità finita. M/M/1/infinito/R - sorgente di arrivi finita. Coda M/M/s. Variante del modello M/M/s: Coda M/M/s/k - sistema a capacità finita. Modello di coda M/G/1, con distribuzione generica per i tempi di servizio. (2 CFU) |
Testi docente | G.Di Fazio, M.Frasca, Metodi Matematici per l'Ingegneria, Monduzzi Editore G.Teppati, Esercitazioni di Analisi Matematica III, Progetto Leonardo. F.S. Hillier and G.J.Lieberman, Introduzione alla Ricerca Operativa, Collana di Matematica e Statistica Franco Angeli. Testi da consultare G.C.Barozzi, Matematica per l'ingegneria dell'informazione, Zanichelli. M.Codegone, Metodi matematici per l'ingegneria, Zanichelli. C. Andrà, M.Codegone, Metodi Matematici per l'Ingegneria, Apogeo Education L.Kleinrock, Queueing Systems, Wiley and Sons vol.I. D. Gross and C.M. Harris, Fundamentals of Queueing Theory, Wiley Series in Probability and statistics. |
Erogazione tradizionale | No |
Erogazione a distanza | No |
Frequenza obbligatoria | No |
Valutazione prova scritta | No |
Valutazione prova orale | No |
Valutazione test attitudinale | No |
Valutazione progetto | No |
Valutazione tirocinio | No |
Valutazione in itinere | No |
Prova pratica | No |
Cerca nel sito
Posta Elettronica Certificata
Direzione
Tel +39 0965.1693217/3252
Fax +39 0965.1693247
Protocollo
Tel +39 0965.1693422
Fax +39 0965.1693247
Didattica e orientamento
Tel +39 0965.1693386/3385
Fax +39 0965.1693247
Segreteria studenti
Tel +39 0965.1691475
Fax +39 0965.1691474
Amministrazione
Tel +39 0965.1693214
Fax +39 0965.1693247
Ricerca
Tel +39 0965.1693422
Fax +39 0965.1693247