Obiettivi |
Al termine del corso lo studente: - conosce il linguaggio e la simbologia utilizzata per operare con gli insiemi, - ha padronanza degli strumenti dell'Aritmetica (conosce i numeri naturali, interi, razionali, reali, ha capacità di manipolarli, usando potenze, radici, frazioni e numeri decimali); - sa usare il calcolo letterale, anche risolvendo equazioni e sistemi di primo grado; - ha appreso le nozioni di base della Logica degli enunciati e sa applicarle utilizzando i connettivi logici e i quantificatori; - sa calcolare la probabilità di eventi elementari (giochi di dadi, estrazioni di palline da urne, ecc); ha conoscenza di alcuni elementi di base del calcolo combinatorio: permutazioni, disposizioni, combinazioni; ha conoscenza delle nozioni di base della statistica: frequenza, media, moda, mediana e sa utilizzare differenti rappresentazioni grafiche delle frequenze; - conosce la geometria euclidea piana di base: gli angoli, i poligoni, i triangoli, i quadrilateri, il cerchio, il Teorema di Pitagora, sa determinare aree e perimetri;- conosce la geometria analitica del piano di base, sa usare equazioni di rette, coefficienti angolari e formule di base per risolvere questioni di parallelismo e perpendicolarità fra rette; - sa determinare nel sistema di coordinate cartesiane ortogonali posizioni e distanze relative di rette e punti; - conosce la geometria euclidea solida di base; sa determinare superfici e volumi delle principali figure nello spazio, conosce costruzioni elementari (ad esempio solidi di rotazione); - sa contestualizzare a situazioni reali concrete le conoscenze matematiche acquisite. Risoluzione di problemi a risposta multipla ed aperta inerenti il programma di Matematica di base: Teoria degli insiemi, Logica, Probabilità e statistica, Aritmetica, Geometria analitica del piano e dello spazio, geometria solida. Nella prova scritta si valutano le capacità critiche raggiunte dallo Studente nell'inquadrare le tematiche oggetto del Corso ed il rigore metodologico delle risoluzioni proposte in risposta ai quesiti formulati. Tale prova ha la durata massima di due ore. Il voto finale sarà attribuito secondo il seguente criterio di valutazione: 30 - 30 e lode: ottima conoscenza degli argomenti, ottima proprietà di linguaggio, completa ed originale capacità interpretativa, spiccata capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti; 26 - 29: conoscenza completa degli argomenti, buona proprietà di linguaggio, completa ed efficace capacità interpretativa, in grado di applicare autonomamente le conoscenze per risolvere i problemi proposti; 24 - 25: conoscenza degli argomenti con un buon grado di apprendimento, discreta proprietà di linguaggio, corretta e sicura capacità interpretativa, capacità di applicare in modo corretto la maggior parte delle conoscenze per risolvere i problemi proposti; 21 - 23: conoscenza adeguata degli argomenti, ma mancata padronanza degli stessi, soddisfacente proprietà di linguaggio, corretta capacità interpretativa, limitata capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti; 18 - 20: conoscenza di base degli argomenti principali e del linguaggio tecnico, capacità interpretativa sufficiente, capacità di applicare le conoscenze acquisite; Insufficiente: non possiede una conoscenza accettabile degli argomenti trattati durante il corso.
|
Programma |
Teoria degli insiemi: Conoscenza del linguaggio e della simbologia utilizzata per operare con gli insiemi. Operazioni con gli insiemi. Insiemi numerici. Le funzioni. Le strutture algebriche.
Elementi di logica: La logica degli enunciati. I connettivi. Le deduzioni. I quantificatori.
Geometria Euclidea: Nel piano: Postulati di Euclide (Cenni), Poligoni (Generalità, convessità e concavità, angoli). Triangoli (criteri di uguaglianza, Teorema di Pitagora), Quadrilateri notevoli e loro proprietà. Poligoni regolari. Il cerchio. Nello spazio: Poliedri, Piramidi e Prismi. Poliedri regolari. Solidi di rotazione. Geometria Analitica: Uso delle coordinate cartesiane sulla retta, sul piano e nello spazio tridimensionale. Il piano cartesiano: equazioni rappresentanti rette (parallelismo, perpendicolarità), grafici. Le coordinate cartesiane nello spazio (cenni).
Algebra e Aritmetica: Proprietà elementari degli insiemi numerici, divisione e classi di resto. Numeri razionali (frazioni), uso e manipolazione, proporzioni, percentuali. Numeri reali (radici) e cenni sui numeri complessi. Calcolo letterale
Calcolo delle Probabilità e Statistica: Primi elementi di probabilità (caso finito). Applicazioni e risoluzione di problemi. Elementi di calcolo combinatorio. Elementi di statistica: frequenze, media, moda, mediana e rappresentazioni grafiche delle frequenze.
|