Corso | Ingegneria Elettrica ed Elettronica LM-28 |
Curriculum | Automazione Industriale |
Orientamento | Orientamento unico |
Anno Accademico | 2021/2022 |
Crediti | 6 |
Settore Scientifico Disciplinare | MAT/05 |
Anno | Primo anno |
Unità temporale | Primo semestre |
Ore aula | 48 |
Attività formativa | Attività formative affini ed integrative |
Docente | SOFIA GIUFFRE' |
Obiettivi | Il Corso si propone di fornire una adeguata conoscenza dei principi e delle metodologie della teoria delle funzioni di variabile complessa e della Trasformata Zeta, la cui conoscenza è essenziale per una maggior comprensione e consapevolezza dei medesimi nei corsi ingegneristici. Ulteriore obiettivo è una adeguata conoscenza di sistemi aleatori di interesse informatico, elettronico e telematico. Conoscenza e comprensione: a seguito del superamento dell’esame, lo studente conosce i principi fondamentali della teoria delle funzioni di variabile complessa, che offre una serie di strumenti matematici essenziali per la risoluzione di problemi ingegneristici, e della Trasformata Zeta, utilizzata nell’elaborazione numerica dei segnali digitali. Conosce inoltre i principali modelli a coda. Capacità di applicare conoscenze: a seguito del superamento dell’esame, lo studente è in grado di applicare le conoscenze teoriche acquisite a problemi legati alla risoluzione di integrali, alle successioni definite per ricorrenza e alla teoria delle code. Autonomia di giudizio: per il superamento dell’esame lo studente deve essere in grado di riconoscere le situazioni e i problemi in cui le tecniche basilari della teoria delle funzioni di variabile complessa, della trasformata Z e dei processi nascita-morte possono essere applicate. Abilità comunicative: a seguito del superamento dell’esame, lo studente è in grado di comunicare le conoscenze acquisite attraverso un linguaggio tecnico-scientifico adeguato a interlocutori specialisti e non specialisti. Capacità di apprendimento: a seguito del superamento dell’esame, lo studente è in grado di approfondire in autonomia le conoscenze acquisite e di applicare le stesse alla conoscenza di nuovi argomenti da affrontare nella prosecuzione del proprio percorso di studi. Modalità di accertamento e valutazione per il modulo di Metodi Matematici per l'Ingegneria L’esame consiste in due prove, una scritta e una orale. La prova scritta ha lo scopo di accertare la capacità acquisite dallo studente nel risolvere esercizi sulle applicazioni del Teorema dei residui, sulla Trasformata Z, sui modelli di code. Voto massimo 30/30. Il superamento della prova scritta consente l’accesso alla prova orale. La prova orale è volta ad accertare il livello di conoscenza e comprensione dei contenuti del corso, di valutare l'autonomia di giudizio, la capacità di apprendimento e le abilità comunicative. La prova orale consiste nella discussione della prova scritta e in domande teoriche sui contenuti del corso. Voto massimo 30/30 Il voto finale delle prove di esame è determinato tenendo conto sia della prova scritta che della prova orale. Modalità di valutazione 30 e lode: conoscenza completa, approfondita e critica degli argomenti, eccellente proprietà di linguaggio, completa ed originale capacità interpretativa, piena capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti; 28 - 30: conoscenza completa e approfondita degli argomenti, ottima proprietà di linguaggio, completa ed efficace capacità interpretativa, in grado di applicare autonomamente le conoscenze per risolvere i problemi proposti; 24 - 27: conoscenza degli argomenti con un buon grado di padronanza, buona proprietà di linguaggio, corretta e sicura capacità interpretativa, buona capacità di applicare in modo corretto la maggior parte delle conoscenze per risolvere i problemi proposti; 20 - 23: conoscenza adeguata degli argomenti ma limitata padronanza degli stessi, soddisfacente proprietà di linguaggio, corretta capacità interpretativa, più che sufficiente capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti; 18 - 19: conoscenza di base degli argomenti principali, conoscenza di base del linguaggio tecnico, sufficiente capacità interpretativa, sufficiente capacità di applicare le conoscenze di base acquisite; <18 Insufficiente: non possiede una conoscenza accettabile degli argomenti trattati durante il corso. |
Programma | Funzioni complesse di variabile complessa. Le funzioni elementari del piano complesso. Condizioni di Cauchy-Riemann. Funzioni olomorfe. Richiami alle curve piane e agli integrali curvilinei. Integrazione nel piano complesso. Teorema di Cauchy-Goursat. I e II formula integrale di Cauchy. Richiami alle serie di potenze nel campo complesso. Funzioni analitiche. Serie di Taylor. Teorema di Taylor. Serie bilatere. Serie di Laurent. Sviluppo in serie di Laurent. Singolarità isolate e classificazione. Residui. La formula dei residui nei poli. Singolarità all'infinito e classificazione. Decomposizione in fratti semplici mediante i residui. Teorema dei residui e corollario. Applicazioni del teorema dei residui. Trasformata zeta: definizione, proprietà, esempi. Applicazioni della trasformata zeta alle successioni definite per ricorrenza ed alle equazioni alle differenze. (4 CFU) Introduzione alla teoria delle code. Caratteristiche e struttura di un sistema a coda. Notazioni di Kendall. Indici di efficienza. Legge di Little. Coda D/D/1. Il ruolo della distribuzione esponenziale. Processi Stocastici e loro classificazione. Processi di Poisson. Processi di Markov. Catene di Markov a parametro continuo. Equazioni di Chapman-Kolmogorov. Equazioni di bilanciamento del flusso. Distribuzione stazionaria. Processi di nascita-morte. Processi di pura nascita. Processi di sole uscite. Coda M/M/1. Varianti del modello M/M/1: M/M/1/k -sistema a capacità finita. M/M/1/infinito/R - sorgente di arrivi finita. Coda M/M/s. Variante del modello M/M/s: Coda M/M/s/k - sistema a capacità finita. Modello di coda M/G/1, con distribuzione generica per i tempi di servizio. (2 CFU) |
Testi docente | G.Di Fazio, M.Frasca, Metodi Matematici per l'Ingegneria, Monduzzi Editore G.Teppati, Esercitazioni di Analisi Matematica III, Progetto Leonardo. F.S. Hillier and G.J.Lieberman, Introduzione alla Ricerca Operativa, Collana di Matematica e Statistica Franco Angeli. Testi da consultare G.C.Barozzi, Matematica per l'ingegneria dell'informazione, Zanichelli. M.Codegone, Metodi matematici per l'ingegneria, Zanichelli. C. Andrà, M.Codegone, Metodi Matematici per l'Ingegneria, Apogeo Education L.Kleinrock, Queueing Systems, Wiley and Sons vol.I. D. Gross and C.M. Harris, Fundamentals of Queueing Theory, Wiley Series in Probability and statistics. |
Erogazione tradizionale | Sì |
Erogazione a distanza | No |
Frequenza obbligatoria | No |
Valutazione prova scritta | Sì |
Valutazione prova orale | Sì |
Valutazione test attitudinale | No |
Valutazione progetto | No |
Valutazione tirocinio | No |
Valutazione in itinere | No |
Prova pratica | No |
Descrizione | Avviso | |
---|---|---|
Ricevimenti di: Sofia Giuffre' | ||
Il ricevimento ha luogo il giovedi' alle 11:00 presso lo studio del docente. E' preferibile chiedere conferma via e-mail. Su richiesta, è possibile concordare un ricevimento in altro giorno e orario. |
|
Cerca nel sito
Posta Elettronica Certificata
Direzione
Tel +39 0965.1693217/3252
Fax +39 0965.1693247
Protocollo
Tel +39 0965.1693422
Fax +39 0965.1693247
Didattica e orientamento
Tel +39 0965.1693386/3385
Fax +39 0965.1693247
Segreteria studenti
Tel +39 0965.1691475
Fax +39 0965.1691474
Amministrazione
Tel +39 0965.1693214
Fax +39 0965.1693247
Ricerca
Tel +39 0965.1693422
Fax +39 0965.1693247